Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Audet, C., Hallé-Hannan, E., & Le Digabel, S. (2023). A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables. Operations Research Forum, 4(1), 37 pages. Lien externe
Audet, C., Le Digabel, S., Rochon Montplaisir, V., & Tribes, C. (2022). Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm. ACM Transactions on Mathematical Software, 48(3), 1-22. Lien externe
Audet, C., Le Digabel, S., Salomon, L., & Tribes, C. (juin 2022). Constrained blackbox optimization with the NOMAD solver on the COCO constrained test suite [Communication écrite]. Genetic and Evolutionary Computation Conference Companion (GECCO 2022), Boston, Massachusetts, USA. Lien externe
Alarie, S., Audet, C., Jacquot, P., & Le Digabel, S. (2022). Hierarchically constrained blackbox optimization. Operations Research Letters, 50(4), 446-451. Lien externe
Audet, C., Le Digabel, S., & Saltet, R. (2022). Quantifying uncertainty with ensembles of surrogates for blackbox optimization. Computational Optimization and Applications, 83(1), 29-66. Lien externe
Audet, C., Le Digabel, S., & Saltet, R. (2021). Quantifying uncertainty with ensembles of surrogates for blackbox optimization. (Rapport technique n° 2021-37). Lien externe
Alarie, S., Audet, C., Bouchet, P.-Y., & Le Digabel, S. (2021). Optimization of stochastic blackboxes with adaptive precision. SIAM Journal on Optimization, 31(4), 3127-3156. Lien externe
Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2021). Performance indicators in multiobjective optimization. European Journal of Operational Research, 292(2), 397-422. Lien externe
Audet, C., Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2021). Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates. Computational Optimization and Applications, 79(1), 1-34. Lien externe
Alarie, S., Audet, C., Gheribi, A. E., Kokkolaras, M., & Le Digabel, S. (2021). Two decades of blackbox optimization applications. EURO Journal on Computational Optimization, 9, 100011 (13 pages). Lien externe
Audet, C., Le Digabel, S., & Tribes, C. (2019). The mesh adaptive direct search algorithm for granular and discrete variables. SIAM Journal on Optimization, 29(2), 1164-1189. Lien externe
Amaioua, N., Audet, C., Conn, A. R., & Le Digabel, S. (2018). Efficient solution of quadratically constrained quadratic subproblems within the mesh adaptive direct search algorithm. European Journal of Operational Research, 268(1), 13-24. Lien externe
Audet, C., Kokkolaras, M., Le Digabel, S., & Talgorn, B. (2018). Order-based error for managing ensembles of surrogates in mesh adaptive direct search. Journal of Global Optimization, 70(3), 645-675. Lien externe
Audet, C., Conn, A. R., Le Digabel, S., & Peyrega, M. (2018). A progressive barrier derivative-free trust-region algorithm for constrained optimization. Computational Optimization and Applications, 71(2), 307-329. Lien externe
Audet, C., Ihaddadene, A., Le Digabel, S., & Tribes, C. (2018). Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm. Optimization Letters, 12(4), 675-689. Lien externe
Al-Maskari, S., Bélisle, E., Li, X., Le Digabel, S., Nawahda, A., & Zhong, J. (avril 2016). Classification with quantification for air quality monitoring [Communication écrite]. 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2016), Auckland, New Zealand. Lien externe
Audet, C., Le Digabel, S., & Tribes, C. (2016). Dynamic scaling in the mesh adaptive direct search algorithm for blackbox optimization. Optimization and Engineering, 17(2), 333-358. Lien externe
Amaioua, N., Le Digabel, S., Audet, C., & Conn, A. R. (juin 2016). Efficient solution of quadratically constrained quadratic subproblems within a direct-search algorithm [Affiche]. Workshop on Nonlinear Optimization Algorithms and Industrial Applications, Toronto, Ontario. Non disponible
Audet, C., Le Digabel, S., & Peyrega, M. (2015). Linear equalities in blackbox optimization. Computational Optimization and Applications, 61(1), 1-23. Lien externe
Audet, C., Ianni, A., Le Digabel, S., & Tribes, C. (2014). Reducing the number of function evaluations in mesh adaptive direct search algorithms. SIAM Journal on Optimization, 24(2), 621-642. Lien externe
Audet, C., Le Digabel, S., Diest, K., Sweatlock, L. A., & Marthaler, D. E. (2013). Metamaterial design by mesh adaptive direct search. Dans Numerical methods for metamaterial design (Vol. 127, p. 71-96). Lien externe
Alarie, S., Audet, C., Garnier, V., Le Digabel, S., & Leclaire, L.-A. (2013). Snow Water Equivalent Estimation Using Blackbox Optimization. Pacific Journal of Optimization, 9(1), 1-21. Lien externe
Audet, C., & Le Digabel, S. (2012). The Mesh Adaptive Direct Search Algorithm for Periodic Variables. Pacific Journal of Optimization, 8(1), 103-119. Lien externe
Audet, C., Dennis, J. E. J., & Le Digabel, S. (2012). Trade-Off Studies in Blackbox Optimization. Optimization Methods & Software, 27(4-5), 613-624. Lien externe
Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2010). Globalization strategies for mesh adaptive direct search. Computational Optimization and Applications, 46(2), 193-215. Lien externe
Abramson, M. A., Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2009). Orthomads: A deterministic MADS instance with orthogonal direct ions. SIAM Journal on Optimization, 20(2), 948-966. Lien externe
Audet, C., Bechard, V., & Le Digabel, S. (2008). Nonsmooth Optimization Through Mesh Adaptive Direct Search and Variable Neighborhood Search. Journal of Global Optimization, 41(2), 299-318. Lien externe
Audet, C., Dennis, J. E., & Le Digabel, S. (2008). Parallel space decomposition of the mesh adaptive direct search algorithm. SIAM Journal on Optimization, 19(3), 1150-1170. Lien externe
Audet, C., Hansen, P., & Le Digabel, S. (2004). Exact solution of three nonconvex quadratic programming problems. Dans Frontiers in global optimization (Vol. 74, p. 25-43). Lien externe
Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., & Mladenovic, N. (2004). Pooling Problem: Alternate Formulations and Solution Methods. Management Science, 50(6), 761-776. Lien externe
Bigeon, J., Le Digabel, S., & Salomon, L. (2024). Handling of constraints in multiobjective blackbox optimization. Computational Optimization and Applications, 45 pages. Lien externe
Bingane, C., Anjos, M. F., & Le Digabel, S. (juillet 2021). CONICOPF: conic relaxations for AC optimal power flow computations [Communication écrite]. IEEE Power and Energy Society General Meeting (PESGM 2021), Washington, D.C., USA (5 pages). Lien externe
Bigeon, J., Le Digabel, S., & Salomon, L. (2021). DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization. Computational Optimization and Applications, 79(2), 301-338. Lien externe
Bingane, C., Anjos, M. F., & Le Digabel, S. (juillet 2021). Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem [Communication écrite]. 2021 IEEE Power and Energy Society General Meeting (PESGM 2021), Washington, D.C., USA (1 page). Lien externe
Bingane, C., Anjos, M. F., & Le Digabel, S. (2019). Tight-and-Cheap Conic Relaxation for the Optimal Reactive Power Dispatch Problem. IEEE Transactions on Power Systems, 34(6), 4684-4693. Lien externe
Bingane, C., Anjos, M. F., & Le Digabel, S. (2018). Tight-and-Cheap Conic Relaxation for the AC Optimal Power Flow Problem. IEEE Transactions on Power Systems, 33(6), 7181-7188. Lien externe
Bélisle, F., Saunier, N., Bilodeau, G.-A., & Le Digabel, S. (janvier 2017). Optimized Video Tracking for Automated Vehicle Turning Movement Counts [Communication écrite]. 96th Annual Meeting of the Transportation Research Board, Washington, D.C.. Lien externe
Bélisle, F., Saunier, N., Bilodeau, G.-A., & Le Digabel, S. (2017). Optimized video tracking for automated vehicle turning movement counts. Transportation Research Record, 2645(2645), 104-112. Lien externe
Belisle, E., Huang, Z., Le Digabel, S., & Gheribi, A. E. (2015). Evaluation of machine learning interpolation techniques for prediction of physical properties. Computational Materials Science, 98(1), 170-177. Lien externe
Bhattacharya, N., El-Mahi, O., Duclos, E., Beltrame, G., Antoniol, G., Le Digabel, S., & Guéhéneuc, Y.-G. (septembre 2012). Optimizing threads schedule alignments to expose the interference bug pattern [Communication écrite]. 4th International Symposium on Search Based Software Engineering (SSBSE 2012), Riva del Garda, Italy. Lien externe
Conn, A. R., & Le Digabel, S. (2013). Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optimization Methods and Software, 28(1), 139-158. Lien externe
Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2022). Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates. Mathematical Programming, 198(1), 675-732. Lien externe
Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2020). Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates. (Rapport technique n° G-2020-60). Lien externe
de Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (septembre 2019). A Framework for Peak Shaving Through the Coordination of Smart Homes [Communication écrite]. IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT 2019 - Latin America), Gramado, Brazil (6 pages). Lien externe
de Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A general framework for customized transition to smart homes. Energy, 189, 11 pages. Lien externe
de Sousa, V. J. R., Anjos, M. F., & Le Digabel, S. (2019). Improving the linear relaxation of maximum k-cut with semidefinite-based constraints. EURO Journal on Computational Optimization, 7(2), 123-151. Lien externe
de Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A realistic energy optimization model for smart-home appliances. International Journal of Energy Research, 43(8), 3237-3262. Lien externe
De Sousa, V. J. R., Anjos, M. F., & Le Digabel, S. (2016). Computational study of valid inequalities for the maximum k-cut problem. (Rapport technique n° G-2016-17). Lien externe
Duclos, E., Le Digabel, S., Guéhéneuc, Y.-G., & Adams, B. (mars 2013). ACRE: An automated aspect creator for testing C++ applications [Communication écrite]. 17th European Conference on Software Maintenance and Reengineering (CSMR 2013), Genova, Italy. Lien externe
Gheribi, A. E., Pelton, A., Bélisle, E., Le Digabel, S., & Harvey, J.-P. (2018). On the prediction of low-cost high entropy alloys using new thermodynamic multi-objective criteria. ACTA Materialia, 161, 73-82. Lien externe
Gauthier, L., Saunier, N., Le Digabel, S., & Cao, G. (janvier 2016). Calibration of driving behavior models using derivative-free optimization and video data for montreal highways [Communication écrite]. 95th Annual Meeting of the Transportation Research Board, Washington, DC. Lien externe
Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K. H., Ranjan, P., Wells, G., & Wild, S. M. (2016). Modeling an augmented lagrangian for blackbox constrained optimization. Technometrics, 58(1), 1-11. Lien externe
Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K. H., Rajan, P., Wells, G., & Wild, S. M. (2016). Rejoinder. Technometrics, 58(1), 26-29. Lien externe
Gheribi, A. E., Harvey, J.-P., Belisle, E., Robelin, C., Chartrand, P., Pelton, A., Bale, C. W., & Le Digabel, S. (2016). Use of a biobjective direct search algorithm in the process design of material science applications. Optimization and Engineering, 17(1), 27-45. Lien externe
Gramacy, R. B., & Le Digabel, S. (2015). The mesh adaptive direct search algorithm with treed gaussian process surrogates. Pacific Journal of Optimization, 11(3), 419-447. Lien externe
Gertz, E., Hiekkalinna, T., Le Digabel, S., Audet, C., Terwilliger, J. D., & Schäffer, A. A. (2014). PSEUDOMARKER 2.0: efficient computation of likelihoods using NOMAD. BMC Bioinformatics, 15(1). Disponible
Gheribi, A. E., Le Digabel, S., Audet, C., & Chartrand, P. (2013). Identifying optimal conditions for magnesium based alloy design using the Mesh Adaptive Direct Search algorithm. Thermochimica Acta, 559, 107-110. Lien externe
Gheribi, A. E., Audet, C., Le Digabel, S., Belisle, E., Bale, C. W., & Pelton, A. (2012). Calculating Optimal Conditions for Alloy and Process Design Using Thermodynamic and Property Databases, the Fact Sage Software and the Mesh Adaptive Direct Search Algorithm. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 36, 135-143. Lien externe
Gheribi, A. E., Robelin, C., Le Digabel, S., Audet, C., & Pelton, A. (2011). Calculating all local minima on liquidus surfaces using the FactSage software and databases and the Mesh Adaptive Direct Search algorithm. Journal of Chemical Thermodynamics, 43(9), 1323-1330. Lien externe
Le Digabel, S., & Wild, S. M. (2023). A taxonomy of constraints in black-box simulation-based optimization. Optimization and Engineering, 2023, 19 pages. Lien externe
Lakhmiri, D., & Le Digabel, S. (2022). Use of Static Surrogates in Hyperparameter Optimization. Operations Research Forum, 3(1). Lien externe
Lakhmiri, D., Alimo, R., & Le Digabel, S. (2022). Anomaly detection for data accountability of Mars telemetry data. Expert Systems With Applications, 189, 116060. Lien externe
Lakhmiri, D., Le Digabel, S., & Tribes, C. (2021). HyperNOMAD: Hyperparameter Optimization of Deep Neural Networks Using Mesh Adaptive Direct Search. ACM Transactions on Mathematical Software, 47(3), 1-27. Lien externe
Lakhmiri, D., & Le Digabel, S. (2021). Use of static surrogates in hyperparameter optimization. (Rapport technique n° G-2021-10). Lien externe
Lakhmiri, D., Alimo, R., & Le Digabel, S. (2020). Tuning a variational autoencoder for data accountability problem in the Mars Science Laboratory ground data system. (Rapport technique n° 2020-31). Lien externe
Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 37(4), 1-15. Lien externe
Le Digabel, S. (2008). Extensions à l'algorithme de recherche directe mads pour l'optimisation non lisse [Thèse de doctorat, École Polytechnique de Montréal]. Disponible
Le Digabel, S. (2002). Topologie et routage dans les réseaux de communications [Mémoire de maîtrise, École Polytechnique de Montréal]. Lien externe
Minville, M., Cartier, D., Guay, C., Leclaire, L.-A., Audet, C., Le Digabel, S., & Merleau, J. (2014). Improving process representation in conceptual hydrological model calibration using climate simulations. Water Resources Research, 50(6), 5044-5073. Lien externe
Picheny, V., Gramacy, R. B., Wild, S., & Le Digabel, S. (décembre 2016). Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian [Communication écrite]. 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain. Lien externe
Pourbagian, M., Talgorn, B., Habashi, W. G., Kokkolaras, M., & Le Digabel, S. (2015). Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems. Optimization and Engineering, 16(4), 663-693. Lien externe
Perron, S., Hansen, P., Le Digabel, S., & Mladenovic, N. (2010). Exact and heuristic solutions of the global supply chain problem with transfer pricing. European Journal of Operational Research, 202(3), 864-879. Lien externe
Rodrigues de Sousa, V. J., Anjos, M. F., & Le Digabel, S. (2021). Computational study of a branching algorithm for the maximum k-cut problem. Discrete Optimization, 100656 (20 pages). Lien externe
Rodrigues de Sousa, V. J., Anjos, M. F., & Le Digabel, S. (2018). Computational study of valid inequalities for the maximum k-cut problem. Annals of Operations Research, 265(1), 5-27. Lien externe
Talgorn, B., Audet, C., Le Digabel, S., & Kokkolaras, M. (2018). Locally weighted regression models for surrogate-assisted design optimization. Optimization and Engineering, 19(1), 213-238. Lien externe
Talgorn, B., Le Digabel, S., & Kokkolaras, M. (2015). Statistical Surrogate Formulations for Simulation-Based Design Optimization. Journal of Mechanical Design, 137(2), 021405. Lien externe
Talgorn, B., Le Digabel, S., & Kokkolaras, M. (août 2014). Problem Formulations for Simulation-Based Design Optimization Using Statistical Surrogates and Direct Search [Communication écrite]. ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2014), Buffalo, New York. Lien externe