<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Le Digabel, Sébastien"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Nombre de documents: 145

Lebeuf, X., Le Digabel, S., Brillon, P., Diago, M., Audet, C., & Tribes, C. (2025). Benchmarking derivative-free optimization solvers for CSP plant design using the solar simulator. (Rapport technique n° G-2025-70). Lien externe

Hallé-Hannan, E., Audet, C., Diouane, Y., Le Digabel, S., & Saves, P. (2025). A distance for mixed-variable and hierarchical domains with meta variables. Neurocomputing, 131208. Lien externe

Soldati, C., Le Digabel, S., & Lesage-Landry, A. (2025). Blackbox optimization for loss minimization in power distribution networks using feeder reconfiguration. (Rapport technique n° G-2025-52). Lien externe

Allaire, N., Le Digabel, S., Orban, D., & Partovi Nia, V. (2025). Zeroth-order Kronecker optimization for pretraining language models. (Rapport technique n° G-2025-44). Lien externe

Hallé-Hannan, E., Audet, C., Diouane, Y., Le Digabel, S., & Tribes, C. (2025). Cat-Suite: A collection of optimization problems with categorical and quantitative variables for benchmarking. (Rapport technique n° G-2025-39). Lien externe

Audet, C., Diouane, Y., Hallé-Hannan, E., Le Digabel, S., & Tribes, C. (2025). CatMADS: Mesh Adaptive Direct Search for constrained blackbox optimization with categorical variables. (Rapport technique n° G-2025-42). Lien externe

Le Digabel, S., Lesage-Landry, A., Salomon, L., & Tribes, C. (2025). Efficient search strategies for constrained multiobjective blackbox optimization. (Rapport technique n° G-2025-28). Lien externe

Audet, C., Gervais-Dubé, M., Hertz, A., Le Digabel, S., & Legrain, A. (2025). Scheduling ISMP 2024. (Rapport technique n° G-2025-35). Lien externe

Andrés-Thió, N., Audet, C., Diago, M., Gheribi, A. E., Le Digabel, S., Lebeuf, X., Lemyre Garneau, M., & Tribes, C. (2025). Solar: a solar thermal power plant simulator for blackbox optimization benchmarking. Optimization and Engineering, 47 pages. Lien externe

Alarie, S., Audet, C., Diago, M., Le Digabel, S., & Lebeuf, X. (2025). Inter-DS: a cost saving algorithm for expensive constrained multi-fidelity blackbox optimization. Computational Optimization and Applications, 23 pages. Lien externe

Allaire, N., Ghazvini Nejad, M., Le Digabel, S., & Partovi Nia, V. (février 2025). Zeroth order optimization for pretraining language models [Communication écrite]. 14th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2025), Porto, Portugal. Disponible

Bigeon, J., Le Digabel, S., & Salomon, L. (2024). Handling of constraints in multiobjective blackbox optimization. Computational Optimization and Applications, 45 pages. Lien externe

Thio, N. A., Audet, C., Diago Martinez, M., Gheribi, A. E., Le Digabel, S., Lebeuf, X., Lemyre-Garneau, M., & Tribes, C. (2024). solar: A solar thermal power plant simulator for blackbox optimization benchmarking. (Rapport technique n° G-2024-37). Lien externe

Hallé-Hannan, E., Audet, C., Diouane, Y., Le Digabel, S., & Saves, P. (2024). A graph-structured distance for heterogeneous datasets with meta variables. (Rapport technique n° G-2024-33). Lien externe

Alarie, S., Audet, C., Diago Martinez, M., Le Digabel, S., & Lebeuf, X. (2023). Hierarchically constrained multi-fidelity blackbox optimization. (Rapport technique n° G-2023-66). Lien externe

Audet, C., Hallé-Hannan, E., & Le Digabel, S. (2023). A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables. Operations Research Forum, 4(1), 37 pages. Lien externe

Le Digabel, S., & Wild, S. M. (2023). A taxonomy of constraints in black-box simulation-based optimization. Optimization and Engineering, 2023, 19 pages. Lien externe

Audet, C., Hallé-Hannan, E., & Le Digabel, S. (2022). A general mathematical framework for constrained mixed-variable blackbox optimization problems with meta and categorical variables. (Rapport technique n° G-2022-11). Lien externe

Bigeon, J., Le Digabel, S., & Salomon, L. (2022). Handling of constraints in multiobjective blackbox optimization. (Rapport technique n° G-2022-10). Lien externe

Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2022). Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates. Mathematical Programming, 198, 675-732. Disponible

Lakhmiri, D., & Le Digabel, S. (2022). Use of Static Surrogates in Hyperparameter Optimization. Operations Research Forum, 3(1). Lien externe

Audet, C., Le Digabel, S., Rochon Montplaisir, V., & Tribes, C. (2022). Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm. ACM Transactions on Mathematical Software, 48(3), 1-22. Lien externe

Lakhmiri, D., Alimo, R., & Le Digabel, S. (2022). Anomaly detection for data accountability of Mars telemetry data. Expert Systems With Applications, 189, 116060. Lien externe

Audet, C., Le Digabel, S., Salomon, L., & Tribes, C. (juin 2022). Constrained blackbox optimization with the NOMAD solver on the COCO constrained test suite [Communication écrite]. Genetic and Evolutionary Computation Conference Companion (GECCO 2022), Boston, Massachusetts, USA. Lien externe

Alarie, S., Audet, C., Jacquot, P., & Le Digabel, S. (2022). Hierarchically constrained blackbox optimization. Operations Research Letters, 50(4), 446-451. Lien externe

Audet, C., Le Digabel, S., & Saltet, R. (2022). Quantifying uncertainty with ensembles of surrogates for blackbox optimization. Computational Optimization and Applications, 83(1), 29-66. Lien externe

Alarie, S., Audet, C., Jacquot, P., & Le Digabel, S. (2021). Hierarchically constrained blackbox optimization. (Rapport technique n° G-2021-65). Lien externe

Alarie, S., Audet, C., Gheribi, A. E., Kokkolaras, M., & Le Digabel, S. (2021). Two decades of blackbox optimization applications. EURO Journal on Computational Optimization, 9, 100011 (13 pages). Disponible

Audet, C., Le Digabel, S., & Saltet, R. (2021). Quantifying uncertainty with ensembles of surrogates for blackbox optimization. (Rapport technique n° 2021-37). Lien externe

Audet, C., Le Digabel, S., Rochon Montplaisir, V., & Tribes, C. (2021). NOMAD version 4: Nonlinear optimization with the MADS algorithm. (Rapport technique n° G-2021-23). Lien externe

Rodrigues de Sousa, V., Anjos, M. F., & Le Digabel, S. (2021). Computational study of a branching algorithm for the maximum k-cut problem. Discrete Optimization, 100656 (20 pages). Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (juillet 2021). CONICOPF: conic relaxations for AC optimal power flow computations [Communication écrite]. IEEE Power and Energy Society General Meeting (PESGM 2021), Washington, D.C., USA (5 pages). Lien externe

Bigeon, J., Le Digabel, S., & Salomon, L. (2021). DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization. Computational Optimization and Applications, 79(2), 301-338. Lien externe

Lakhmiri, D., Le Digabel, S., & Tribes, C. (2021). HyperNOMAD: Hyperparameter Optimization of Deep Neural Networks Using Mesh Adaptive Direct Search. ACM Transactions on Mathematical Software, 47(3), 1-27. Lien externe

Alarie, S., Audet, C., Bouchet, P.-Y., & Le Digabel, S. (2021). Optimization of stochastic blackboxes with adaptive precision. SIAM Journal on Optimization, 31(4), 3127-3156. Lien externe

Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2021). Performance indicators in multiobjective optimization. European Journal of Operational Research, 292(2), 397-422. Lien externe

Audet, C., Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2021). Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates. Computational Optimization and Applications, 79(1), 1-34. Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (juillet 2021). Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem [Communication écrite]. 2021 IEEE Power and Energy Society General Meeting (PESGM 2021), Washington, D.C., USA (1 page). Lien externe

Lakhmiri, D., & Le Digabel, S. (2021). Use of static surrogates in hyperparameter optimization. (Rapport technique n° G-2021-10). Lien externe

Alarie, S., Audet, C., Gheribi, A. E., Kokkolaras, M., & Le Digabel, S. (2020). Two decades of blackbox optimization applications. (Rapport technique n° G-2020-58). Lien externe

Lakhmiri, D., Alimo, R., & Le Digabel, S. (2020). Tuning a variational autoencoder for data accountability problem in the Mars Science Laboratory ground data system. (Rapport technique n° 2020-31). Lien externe

Bigeon, J., Le Digabel, S., & Salomon, L. (2020). DMulti-MADS: Mesh adaptive direct multisearch for blackbox multiobjective optimization. (Rapport technique n° G-2020-25). Lien externe

Lien externe

Rodrigues de Sousa, V., Anjos, M. F., & Le Digabel, S. (2020). Computational study of a branching algorithm for the maximum k-cut problem. (Rapport technique n° G-2020-11). Lien externe

Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2020). Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates. (Rapport technique n° G-2020-60). Lien externe

Alarie, S., Audet, C., Bouchet, P.-Y., & Le Digabel, S. (2019). Optimization of noisy blackboxes with adaptive precision. (Rapport technique n° G-2019-84). Lien externe

Audet, C., Dzahini, K. J., Kokkolaras, M., & Le Digabel, S. (2019). StoMADS: Stochastic blackbox optimization using probabilistic estimates. (Rapport technique n° G-2019-30). Lien externe

Lakhmiri, D., Le Digabel, S., & Tribes, C. (2019). HyperNOMAD: Hyperparameter optimization of deep neural networks using mesh adaptive direct search. (Rapport technique n° G-2019-46). Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (2019). CONICOPF: A tight-and-cheap conic relaxation with accuracy metrics for single-period and multi-period ACOPF problems. (Rapport technique n° G-2019-19). Lien externe

De Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A framework for peak shaving through the coordination of smart homes. (Rapport technique n° G-2019-16). Lien externe

De Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A general framework for customized transition to smart homes. (Rapport technique n° G-2019-09). Lien externe

De Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (septembre 2019). A Framework for Peak Shaving Through the Coordination of Smart Homes [Communication écrite]. IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT 2019 - Latin America), Gramado, Brazil (6 pages). Lien externe

De Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A general framework for customized transition to smart homes. Energy, 189, 11 pages. Lien externe

Rodrigues de Sousa, V., Anjos, M. F., & Le Digabel, S. (2019). Improving the linear relaxation of maximum k-cut with semidefinite-based constraints. EURO Journal on Computational Optimization, 7(2), 123-151. Lien externe

Audet, C., Le Digabel, S., & Tribes, C. (2019). The mesh adaptive direct search algorithm for granular and discrete variables. SIAM Journal on Optimization, 29(2), 1164-1189. Lien externe

De Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2019). A realistic energy optimization model for smart-home appliances. International Journal of Energy Research, 43(8), 3237-3262. Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (août 2019). Tight-and-cheap conic relaxation for the AC optimal power flow problem [Résumé]. IEEE Power & Energy Society General Meeting (PESGM 2019), Atlanta, GA, USA. Publié dans 2019 IEEE Power & Energy Society General Meeting (PESGM). Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (2019). Tight-and-Cheap Conic Relaxation for the Optimal Reactive Power Dispatch Problem. IEEE Transactions on Power Systems, 34(6), 4684-4693. Lien externe

Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2018). Performance indicators in multiobjective optimization. (Rapport technique n° G-2018-90). Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (2018). Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem. (Rapport technique n° G-2018-76). Lien externe

De Souza Dutra, M. D., Anjos, M. F., & Le Digabel, S. (2018). Balancing realism and complexity: An accurate optimization model for electricity usage in smart homes. (Rapport technique n° G-2018-06). Lien externe

Alarie, S., Amaioua, N., Audet, C., Le Digabel, S., & Leclaire, L.-A. (2018). Selection of variables in parallel space decomposition for the mesh adaptive. (Rapport technique n° G-2018-38). Lien externe

Rodrigues de Sousa, V., Anjos, M. F., & Le Digabel, S. (2018). Improving the linear relaxation of maximum k-cut with semidefinite-based constraints. (Rapport technique n° G-2018-26). Lien externe

Audet, C., Le Digabel, S., & Tribes, C. (2018). The mesh adaptive direct search algorithm for granular and discrete variables. (Rapport technique n° G-2018-16). Lien externe

Audet, C., Kokkolaras, M., Le Digabel, S., & Talgorn, B. (2018). Order-based error for managing ensembles of surrogates in derivative-free optimization. (Rapport technique n° G-2016-36). Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (2018). Tight-and-cheap conic relaxation for the AC optimal power flow problem. (Rapport technique n° G-2018-02). Lien externe

Rodrigues de Sousa, V. J., Anjos, M. F., & Le Digabel, S. (2018). Computational study of valid inequalities for the maximum k-cut problem. Annals of Operations Research, 265(1), 5-27. Lien externe

Amaioua, N., Audet, C., Conn, A. R., & Le Digabel, S. (2018). Efficient solution of quadratically constrained quadratic subproblems within the mesh adaptive direct search algorithm. European Journal of Operational Research, 268(1), 13-24. Lien externe

Talgorn, B., Audet, C., Le Digabel, S., & Kokkolaras, M. (2018). Locally weighted regression models for surrogate-assisted design optimization. Optimization and Engineering, 19(1), 213-238. Lien externe

Gheribi, A. E., Pelton, A., Belisle, È., Le Digabel, S., & Harvey, J.-P. (2018). On the prediction of low-cost high entropy alloys using new thermodynamic multi-objective criteria. ACTA Materialia, 161, 73-82. Lien externe

Audet, C., Kokkolaras, M., Le Digabel, S., & Talgorn, B. (2018). Order-based error for managing ensembles of surrogates in mesh adaptive direct search. Journal of Global Optimization, 70(3), 645-675. Lien externe

Audet, C., Conn, A. R., Le Digabel, S., & Peyrega, M. (2018). A progressive barrier derivative-free trust-region algorithm for constrained optimization. Computational Optimization and Applications, 71(2), 307-329. Lien externe

Audet, C., Ihaddadene, A., Le Digabel, S., & Tribes, C. (2018). Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm. Optimization Letters, 12(4), 675-689. Lien externe

Bingane, C., Anjos, M. F., & Le Digabel, S. (2018). Tight-and-Cheap Conic Relaxation for the AC Optimal Power Flow Problem. IEEE Transactions on Power Systems, 33(6), 7181-7188. Lien externe

Bélisle, F., Saunier, N., Bilodeau, G.-A., & Le Digabel, S. (janvier 2017). Optimized Video Tracking for Automated Vehicle Turning Movement Counts [Communication écrite]. 96th Annual Meeting of the Transportation Research Board, Washington, D.C.. Non disponible

Bélisle, F., Saunier, N., Bilodeau, G.-A., & Le Digabel, S. (2017). Optimized video tracking for automated vehicle turning movement counts. Transportation Research Record, 2645(2645), 104-112. Lien externe

Amaioua, N., Audet, C., Conn, A. R., & Le Digabel, S. (2016). Efficient solution of quadratically constrained quadratic subproblems within a direct-search algorithm. (Rapport technique n° G-2016-45). Lien externe

Talgorn, B., Audet, C., Le Digabel, S., & Kokkolaras, M. (2016). Locally weighted regression models for surrogate-assisted design optimization. (Rapport technique n° G-2016-113). Lien externe

Audet, C., Le Digabel, S., & Peyrega, M. (2016). A derivative-free trust-region augmented Lagrangian algorithm. (Rapport technique n° G-2016-53). Lien externe

Audet, C., Ihaddadene, A., Le Digabel, S., & Tribes, C. (2016). Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm. (Rapport technique n° G-2016-55). Lien externe

Picheny, V., Gramacy, R. B., Wild, S. M., & Le Digabel, S. (2016). Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian. (Rapport technique n° G-2016-43). Lien externe

Audet, C., Conn, A. R., Le Digabel, S., & Peyrega, M. (2016). A progressive barrier derivative-free trust-region algorithm for constrained optimization. (Rapport technique n° G-2016-49). Lien externe

Picheny, V., Gramacy, R. B., Wild, S., & Le Digabel, S. (décembre 2016). Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian [Communication écrite]. 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain. Lien externe

Gauthier, L., Saunier, N., Le Digabel, S., & Cao, G. (janvier 2016). Calibration of driving behavior models using derivative-free optimization and video data for montreal highways [Communication écrite]. 95th Annual Meeting of the Transportation Research Board, Washington, DC. Lien externe

Al-Maskari, S., Belisle, È., Li, X., Le Digabel, S., Nawahda, A., & Zhong, J. (avril 2016). Classification with quantification for air quality monitoring [Communication écrite]. 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2016), Auckland, New Zealand. Lien externe

de Sousa, V. J. R., Anjos, M. F., & Le Digabel, S. (2016). Computational study of valid inequalities for the maximum k-cut problem. (Rapport technique n° G-2016-17). Lien externe

Audet, C., Le Digabel, S., & Tribes, C. (2016). Dynamic scaling in the mesh adaptive direct search algorithm for blackbox optimization. Optimization and Engineering, 17(2), 333-358. Lien externe

Amaioua, N., Le Digabel, S., Audet, C., & Conn, A. R. (juin 2016). Efficient solution of quadratically constrained quadratic subproblems within a direct-search algorithm [Affiche]. Workshop on Nonlinear Optimization Algorithms and Industrial Applications, Toronto, Ontario. Non disponible

Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K. H., Ranjan, P., Wells, G., & Wild, S. M. (2016). Modeling an augmented lagrangian for blackbox constrained optimization. Technometrics, 58(1), 1-11. Lien externe

Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K. H., Rajan, P., Wells, G., & Wild, S. M. (2016). Rejoinder. Technometrics, 58(1), 26-29. Lien externe

Gheribi, A. E., Harvey, J.-P., Bélisle, È., Robelin, C., Chartrand, P., Pelton, A., Bale, C. W., & Le Digabel, S. (2016). Use of a biobjective direct search algorithm in the process design of material science applications. Optimization and Engineering, 17(1), 27-45. Lien externe

Le Digabel, S., Tribes, C., & Audet, C. (2015). NOMAD User Guide. Version 3.7.2. (Rapport technique n° G-2009-37). Lien externe

Gheribi, A. E., Harvey, J.-P., Bélisle, È., Robelin, C., Chartrand, P., Pelton, A., Bale, C. W., & Le Digabel, S. (2015). Use of a biobjective direct search algorithm in the process design of material science applications. (Rapport technique n° G-2014-103). Lien externe

Le Digabel, S., & Wild, S. M. (2015). A taxonomy of constraints in simulation-based optimization. (Rapport technique n° G-2015-57). Lien externe

Pourbagian, M., Talgorn, B., Habashi, W. G., Kokkolaras, M., & Le Digabel, S. (2015). Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems. Optimization and Engineering, 16(4), 663-693. Lien externe

Bélisle, È., Huang, Z., Le Digabel, S., & Gheribi, A. E. (2015). Evaluation of machine learning interpolation techniques for prediction of physical properties. Computational Materials Science, 98(1), 170-177. Lien externe

Audet, C., Le Digabel, S., & Peyrega, M. (2015). Linear equalities in blackbox optimization. Computational Optimization and Applications, 61(1), 1-23. Lien externe

Gramacy, R. B., & Le Digabel, S. (2015). The mesh adaptive direct search algorithm with treed gaussian process surrogates. Pacific Journal of Optimization, 11(3), 419-447. Lien externe

Talgorn, B., Le Digabel, S., & Kokkolaras, M. (2015). Statistical Surrogate Formulations for Simulation-Based Design Optimization. Journal of Mechanical Design, 137(2), 021405. Lien externe

Pourbagian, M., Talgorn, B., Habashi, W. G., Kokkolaras, M., & Le Digabel, S. (2014). On power optimization of aircraft electro-thermal anti-icing systems. (Rapport technique n° G-2014-72). Lien externe

Audet, C., Le Digabel, S., & Peyrega, M. (2014). Linear Equalities in Blackbox Optimization. (Rapport technique n° G-2014-36). Lien externe

Audet, C., Le Digabel, S., & Tribes, C. (2014). Dynamic scaling in the Mesh Adaptive Direct Search algorithm for blackbox optimization. (Rapport technique n° G-2014-16). Lien externe

Gramacy, R. B., Gray, G. A., Le Digabel, S., Lee, H. K. H., Ranjan, P., Weels, G., & Wild, S. M. (2014). Modeling an augmented Lagrangian for improved blackbox constrained optimization. (Rapport technique n° G-2014-17). Lien externe

Talgorn, B., Le Digabel, S., & Kokkolaras, M. (2014). Problem formulations for simulation-based design optimization using statistical surrogates and direct search. (Rapport technique n° G-2014-04). Lien externe

Minville, M., Cartier, D., Guay, C., Leclaire, L.-A., Audet, C., Le Digabel, S., & Merleau, J. (2014). Improving process representation in conceptual hydrological model calibration using climate simulations. Water Resources Research, 50(6), 5044-5073. Lien externe

Talgorn, B., Le Digabel, S., & Kokkolaras, M. (août 2014). Problem Formulations for Simulation-Based Design Optimization Using Statistical Surrogates and Direct Search [Communication écrite]. ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2014), Buffalo, New York. Lien externe

Gertz, E., Hiekkalinna, T., Le Digabel, S., Audet, C., Terwilliger, J. D., & Schäffer, A. A. (2014). PSEUDOMARKER 2.0: efficient computation of likelihoods using NOMAD. BMC Bioinformatics, 15(1). Disponible

Audet, C., Ianni, A., Le Digabel, S., & Tribes, C. (2014). Reducing the number of function evaluations in mesh adaptive direct search algorithms. SIAM Journal on Optimization, 24(2), 621-642. Lien externe

Duclos, E., Le Digabel, S., Guéhéneuc, Y.-G., & Adams, B. (mars 2013). ACRE: An automated aspect creator for testing C++ applications [Communication écrite]. 17th European Conference on Software Maintenance and Reengineering (CSMR 2013), Genova, Italy. Lien externe

Gheribi, A. E., Le Digabel, S., Audet, C., & Chartrand, P. (2013). Identifying optimal conditions for magnesium based alloy design using the Mesh Adaptive Direct Search algorithm. Thermochimica Acta, 559, 107-110. Lien externe

Audet, C., Le Digabel, S., Diest, K., Sweatlock, L. A., & Marthaler, D. E. (2013). Metamaterial design by mesh adaptive direct search. Dans Numerical methods for metamaterial design (Vol. 127, p. 71-96). Lien externe

Alarie, S., Audet, C., Garnier, V., Le Digabel, S., & Leclaire, L.-A. (2013). Snow Water Equivalent Estimation Using Blackbox Optimization. Pacific Journal of Optimization, 9(1), 1-21. Lien externe

Conn, A. R., & Le Digabel, S. (2013). Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optimization Methods and Software, 28(1), 139-158. Lien externe

Gramacy, R. B., & Le Digabel, S. (2012). The Mesh Adaptive Direct Search Algorithm with Treed Gaussian Process Surrogates. (Rapport technique n° G-2011-37). Lien externe

Audet, C., Ianni, A., Le Digabel, S., & Tribes, C. (2012). Reducing the Number of Function Evaluations in Mesh Adaptive Direct Search Algorithms. (Rapport technique n° G-2012-43). Lien externe

Duclos, E., Guéhéneuc, Y.-G., & Le Digabel, S. (2012). ACRE: An Automated Aspect Creator for Testing C++ Applications. (Rapport technique n° G-2012-19). Lien externe

Gheribi, A. E., Audet, C., Le Digabel, S., Belisle, È., Bale, C. W., & Pelton, A. (2012). Calculating Optimal Conditions for Alloy and Process Design Using Thermodynamic and Property Databases, the Fact Sage Software and the Mesh Adaptive Direct Search Algorithm. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 36, 135-143. Lien externe

Audet, C., & Le Digabel, S. (2012). The Mesh Adaptive Direct Search Algorithm for Periodic Variables. Pacific Journal of Optimization, 8(1), 103-119. Lien externe

Bhattacharya, N., El-Mahi, O., Duclos, E., Beltrame, G., Antoniol, G., Le Digabel, S., & Guéhéneuc, Y.-G. (septembre 2012). Optimizing threads schedule alignments to expose the interference bug pattern [Communication écrite]. 4th International Symposium on Search Based Software Engineering (SSBSE 2012), Riva del Garda, Italy. Lien externe

Audet, C., Dennis, J. E., & Le Digabel, S. (2012). Trade-Off Studies in Blackbox Optimization. Optimization Methods & Software, 27(4-5), 613-624. Lien externe

Conn, A. R., & Le Digabel, S. (2011). Use of quadratic models with mesh adaptive direct search for constrained black box optimization. (Rapport technique n° G-2011-11). Lien externe

Alarie, S., Audet, C., Garnier, V., Le Digabel, S., & Leclaire, L.-A. (2011). Snow Water Equivalent Estimation Using Blackbox Optimization. (Rapport technique n° G-2011-09). Lien externe

Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 37(4), 1-15. Lien externe

Gheribi, A. E., Robelin, C., Le Digabel, S., Audet, C., & Pelton, A. (2011). Calculating all local minima on liquidus surfaces using the FactSage software and databases and the Mesh Adaptive Direct Search algorithm. Journal of Chemical Thermodynamics, 43(9), 1323-1330. Lien externe

Gheribi, A. E., Audet, C., Le Digabel, S., Belisle, È., & Pelton, A. (2010). Calculating Optimal Conditions for Alloy and Process Design Using Thermodynamic and Properties Databases, the FactSage Software and the Mesh Adaptive Direct Search (MADS) Algorithm. (Rapport technique n° G-2010-77). Lien externe

Gheribi, A. E., Robelin, C., Le Digabel, S., Audet, C., & Pelton, A. (2010). Identifying Local Minima in the Liquidus Surface Using the FactSage Software and the Mesh Adaptive Direct Search (MADS) Algorithm. (Rapport technique n° G-2010-76). Lien externe

Audet, C., Dennis, J. E., & Le Digabel, S. (2010). Sensitivity to Constraints in Blackbox Optimization. (Rapport technique n° G-2010-49). Lien externe

Le Digabel, S. (2010). NOMAD: Nonlinear Optimization with the MADS Algorithm. (Rapport technique n° G-2009-39). Lien externe

Perron, S., Hansen, P., Le Digabel, S., & Mladenović, N. (2010). Exact and heuristic solutions of the global supply chain problem with transfer pricing. European Journal of Operational Research, 202(3), 864-879. Lien externe

Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2010). Globalization strategies for mesh adaptive direct search. Computational Optimization and Applications, 46(2), 193-215. Lien externe

Audet, C., & Le Digabel, S. (2009). The Mesh Adaptive Direct Search Algorithm for Periodic Variables. (Rapport technique n° G-2009-23). Lien externe

Abramson, M. A., Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2009). Orthomads: A deterministic MADS instance with orthogonal direct ions. SIAM Journal on Optimization, 20(2), 948-966. Lien externe

Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2008). Globalization Strategies for Mesh Adaptive Direct Search. (Rapport technique n° G-2008-74). Lien externe

Abramson, M. A., Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2008). OrthoMADS: A Deterministic MADS Instance with Orthogonal Directions. (Rapport technique n° G-2008-15). Lien externe

Perron, S., Hansen, P., Le Digabel, S., & Mladenović, N. (2008). Transfer Pricing in a Global Supply Chain. (Rapport technique n° G-2008-17). Lien externe

Le Digabel, S. (2008). Extensions à l'algorithme de recherche directe mads pour l'optimisation non lisse [Thèse de doctorat, École Polytechnique de Montréal]. Disponible

Audet, C., Béchard, V., & Le Digabel, S. (2008). Nonsmooth Optimization Through Mesh Adaptive Direct Search and Variable Neighborhood Search. Journal of Global Optimization, 41(2), 299-318. Lien externe

Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2008). Parallel space decomposition of the mesh adaptive direct search algorithm. SIAM Journal on Optimization, 19(3), 1150-1170. Lien externe

Audet, C., Dennis Jr., J. E., & Le Digabel, S. (2007). Parallel Space Decomposition of the Mesh Adaptive Direct Search Algorithm. (Rapport technique n° G-2007-81). Lien externe

Audet, C., Béchard, V., & Le Digabel, S. (2007). Nonsmooth Optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search. (Rapport technique n° G-2006-61). Lien externe

Audet, C., Hansen, P., & Le Digabel, S. (2004). Exact solution of three nonconvex quadratic programming problems. Dans Frontiers in global optimization (Vol. 74, p. 25-43). Lien externe

Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., & Mladenović, N. (2004). Pooling Problem: Alternate Formulations and Solution Methods. Management Science, 50(6), 761-776. Lien externe

Audet, C., Hansen, P., & Le Digabel, S. (2003). Exact Solution of Three Nonconvex Quadratic Programming Problems. (Rapport technique n° G-2003-16). Lien externe

Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., & Mladenović, N. (2002). Pooling Problem: Alternate Formulations and Solution Methods. (Rapport technique n° G-2000-23). Lien externe

Le Digabel, S. (2002). Topologie et routage dans les réseaux de communications [Mémoire de maîtrise, École Polytechnique de Montréal]. Lien externe

Liste produite: Sat Dec 6 04:53:26 2025 EST.