![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Aravkin, A., Baraldi, R., Leconte, G., & Orban, D. (2024). Corrigendum: A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (Technical Report n° G-2021-12-SM). External link
Aravkin, A., Baraldi, R., & Orban, D. (2024). A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (Technical Report n° G-2021-12). External link
Aravkin, A. Y., Baraldi, R., & Orban, D. (2024). A Levenberg-Marquardt method for nonsmooth regularized least squarres. SIAM Journal on Scientific Computing, 46(4), A2557-A2581. External link
Aravkin, A., Baraldi, R., & Orban, D. (2022). A Levenberg-Marquardt method for nonsmooth regularized least squares. (Technical Report n° G-2022-58). External link
Aravkin, A. Y., Baraldi, R., & Orban, D. (2022). A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. SIAM Journal on Optimization, 32(2), 900-929. External link
Angla, C., Bigeon, J., & Orban, D. (2020). Modeling and solving bundle adjustment problems. (Technical Report n° G-2020-42). External link
Arreckx, S., & Orban, D. (2018). A regularized factorization-free method for equality-constrained optimization. SIAM Journal on Optimization, 28(2), 1613-1639. External link
Arreckx, S., Lambe, A., Martins, J. R. R. A., & Orban, D. (2016). A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization. Optimization and Engineering, 17(2), 359-384. External link
Arreckx, S., Orban, D., & Van Omme, N. (2016). NLP.py: An object-oriented environment for large-scale optimization. (Technical Report n° G-2016-42). External link
Arreckx, S., & Orban, D. (2016). A Regularized Factorization-Free Method for Equality-Constrained Optimization. (Technical Report n° G-2016-65). External link
Arreckx, S., Lambe, A., Martins, J. R. R. A., & Orban, D. (2014). A matrix-free augmented Lagrangian algorithm with application to large-scale structural design optimization. (Technical Report n° G-2014-71). External link
Audet, C., Dang, C.-K., & Orban, D. (2014). Optimization of algorithms with OPAL. Mathematical Programming Computation, 6(3), 233-254. External link
Audet, C., Dang, C. K., & Orban, D. (2013). Efficient use of parallelism in algorithmic parameter optimization applications. Optimization Letters, 7(3), 421-433. External link
Armand, P., Benoist, J., & Orban, D. (2013). From Global to Local Convergence of Interior Methods for Nonlinear Optimization. Optimization Methods & Software, 28(5), 1051-1080. External link
Arioli, M., & Orban, D. (2013). Iterative Methods for Symmetric Quasi-Definite Linear Systems--Part I: Theory. (Technical Report n° G-2013-32). External link
Armand, P., & Orban, D. (2012). The squared slacks transformation in nonlinear programming. SQU Journal for Science, 17(1), 22-29. Available
Ayotte-Sauvé, É., Chugunova, M., Cortes, B., Lina, A., Majumdar, A., Orban, D., Prior, C., & Zalzal, V. (2011, August). On Equidistant Points on a Curve [Paper]. 4e Atelier de résolution de problèmes industriels de Montréal, Montréal, QC, Canada. External link
Audet, C., Dang, C.-K., & Orban, D. (2010). Algorithmic parameter optimization of the DFO method with the OPAL framework. In Naono, K., Teranishi, K., Cavazos, J., & Suda, R. (eds.), Software Automatic Tuning: From Concepts to State-of-the-Art Results (pp. 255-274). External link
Armand, P., Kiselev, A., Marcotte, O., & Orban, D. (2009). Self calibration of a pinhole camera. Mathematics-in-Industry Case Studies, 1, 81-98. External link
Armand, P., Benoist, J., & Orban, D. (2008). Dynamic Updates of the Barrier Parameter in Primal-Dual Methods for Nonlinear Programming. Computational Optimization and Applications, 41(1), 1-25. External link
Audet, C., & Orban, D. (2006). Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization. SIAM Journal on Optimization, 17(3), 642-664. External link
Bigeon, J., Orban, D., & Raynaud, P. (2023). A framework around limited-memory partitioned quasi-Newton methods. (Technical Report n° G-2023-17). External link
Bourhis, J., Dussault, J.-P., & Orban, D. (2019). Étude du comportement des méthodes BFGS et L-BFGS pour résoudre un sous-problème de région de confiance. (Technical Report n° G-2019-64). External link
Buttari, A., Orban, D., Ruiz, D., & Titley-Peloquin, D. (2019). A tridiagonalization method for symmetric saddle-point systems. SIAM Journal on Scientific Computing, 41(5), S409-S432. External link
Buttari, A., Orban, D., Ruiz, D., & Titley-Peloquin, D. (2018). A tridiagonalization method for symmetric saddle-point and quasi-definitive system. (Technical Report n° G-2018-42). External link
Beauthier, C., Crélot, A. S., Orban, D., Sainvitu, C., & Sartenaer, A. (2016, January). Surrogate Management in Mixed-Variable Derivative-Free Optimization [Paper]. 30th Annual Conference of the Belgian Operational Research Society (ORBEL 30), Louvain-la-Neuve, Belgique. Unavailable
Crélot, A.-S., Beauthier, C., Orban, D., Sainvitu, C., & Sartenaer, A. (2017). Combining surrogate strategies with MADS for mixed-variable derivative-free optimization. (Technical Report n° G-2017-70). External link
Côté, P., Demeester, K., Orban, D., & Towhidi, M. (2017). Numerical methods for stochastic dynamic programming with application to hydropower optimization. (Technical Report n° G-2017-64). External link
Coulibaly, Z., & Orban, D. (2012). An ℓ₁ Elastic Interior-Point Method for Mathematical Programs With Complementarity Constraints. SIAM Journal on Optimization, 22(1), 187-211. External link
Conn, A. R., Gould, N. I. M., Orban, D., & Toint, P. L. (2000). A primal-dual trust-region algorithm for non-convex nonlinear programming. Mathematical Programming, 87(2), 215-249. External link
Diouane, Y., Gürol, S., Mouhtal, O., & Orban, D. (2024). An efficient scaled spectral preconditioner for sequences of symmetric positive definite linear systems. (Technical Report n° G-2024-66). External link
Diouane, Y., Laghdaf Habiboullah, M., & Orban, D. (2024). A proximal modified quasi-Newton method for nonsmooth regularized optimization. (Technical Report n° G-2024-64). External link
Diouane, Y., Laghdaf Habiboullah, M., & Orban, D. (2024). Complexity of trust-region methods in the presence of unbounded Hessian approximations. (Technical Report n° G-2024-43). External link
Diouane, Y., Golier, M., & Orban, D. (2024). A nonsmooth exact penalty method for equality-constrained optimization : complexity and implementation. (Technical Report n° G-2024-55). External link
Dussault, J.-P., Migot, T., & Orban, D. (2023). Scalable adaptive cubic regularization methods. Mathematical Programming, 35 pages. External link
di Serafino, D., & Orban, D. (2021). Constraint-Preconditioned Krylov Solvers for Regularized Saddle-Point Systems. SIAM Journal on Scientific Computing, 43(2), 1001-1026. External link
Dehghani, M., Lambe, A., & Orban, D. (2020). A regularized interior-point method for constrained linear least squares. INFOR: Information Systems and Operational Research, 58(2), 202-224. External link
Dahito, M.-A., & Orban, D. (2019). The conjugate residual method in linesearch and trust-region methods. SIAM Journal on Optimization, 29(3), 1988-2025. External link
di Serafino, D., & Orban, D. (2019). Constraint-preconditioned Krylov solvers for regularized saddle-point systems. (Technical Report). External link
Dehghani, M., Lambe, A., & Orban, D. (2018). A regularized interior-point method for constrained linear least squares. (Technical Report n° G-2018-07). External link
Dahito, M.-A., & Orban, D. (2018). The conjugate residual method in linesearch and trust-region methods. (Technical Report n° G-2018-50). External link
Dehghani, A., Goffin, J. L., & Orban, D. (2017). A primal-dual regularized interior-point method for semidefinite programming. Optimization Methods & Software, 32(1), 193-219. External link
Dussault, J.-P., & Orban, D. (2015). A Scalable Implementation of Adaptive Cubic Regularization Methods Using Shifted Linear Systems. (Technical Report n° G-2015-109). External link
Dehghani, A., Goffin, J.-L., & Orban, D. (2012). Solving Unconstrained Nonlinear Programs Using ACCPM. (Technical Report n° G-2012-02). External link
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1809-A1835. External link
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2020). Implementing a smooth exact penalty function for general constrained nonlinear optimization. SIAM Journal on Scientific Computing, 42(3), A1836-A1859. External link
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for constrained nonlinear optimization. (Technical Report n° G-2019-27). External link
Estrin, R., Orban, D., & Saunders, M. A. (2019). Euclidean-norm error bounds for SYMMLQ and CG. SIAM Journal on Matrix Analysis and Applications, 40(1), 235-253. External link
Estrin, R., Friedlander, M. P., Orban, D., & Saunders, M. A. (2019). Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. (Technical Report n° G-2019-04). External link
Estrin, R., Orban, D., & Saunders, M. A. (2019). LNLQ: An iterative method for least-norm problems with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(3), 1102-1124. External link
Estrin, R., Orban, D., & Saunders, M. A. (2019). LSLQ: An iterative method for linear least-squares with an error minimization property. SIAM Journal on Matrix Analysis and Applications, 40(1), 254-275. External link
Estrin, R., Orban, D., & Saunders, M. A. (2018). LNLQ: An iterative method for least-norm problems with an error minimization property. (Technical Report n° G-2018-40). External link
Estrin, R., Orban, D., & Saunders, M. A. (2017). LSLQ: An Iterative Method for Linear Least-Squares with an Error Minimization Property. (Technical Report n° G-2017-05). External link
Estrin, R., Orban, D., & Saunders, M. A. (2016). Estimates of the 2-Norm Forward Error for SYMMLQ and CG. (Technical Report n° G-2016-70). External link
Fowkes, J., Lister, A., Montoison, A., & Orban, D. (2024). LibHSL : the ultimate collection for large-scale scientific computation. (Technical Report n° G-2024-06). External link
Fowkes, J., Gould, N. I. M., Montoison, A., & Orban, D. (2023). GALAHAD 4 an open source library of Fortran packages with C and Matlab interfaces for continuous optimization' [Dataset]. External link
Friedlander, M. P., & Orban, D. (2012). A Primal-Dual Regularized Interior-Point Method for Convex Quadratic Programs. Mathematical Programming Computation, 4(1), 71-107. External link
Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., & Schichl, H. (2010). Convexity and Concavity Detection in Computational Graphs: Tree Walks for Convexity Assessment. INFORMS Journal on Computing, 22(1), 26-43. External link
Fourer, R., & Orban, D. (2010). The DrAMPL Meta Solver for Optimization Problem Analysis. Computational Management Science, 7(4), 437-463. External link
Ghannad, A., Orban, D., & Saunders, M. A. (2021). Linear systems arising in interior methods for convex optimization: a symmetric formulation with bounded condition number. Optimization Methods and Software, 37(4), 1344-1369. External link
Ghannad, A., Orban, D., & Saunders, M. A. (2020). A symmetric formulation of the linear system arising in interior methods for convex optimization with bounded condition number. (Technical Report n° G-2020-37). External link
Goussard, Y., McLaughlin, M., & Orban, D. (2017). Factorization-free methods for computed tomography. (Technical Report n° G-2017-65). External link
Gould, N. I. M., Orban, D., & Toint, P. L. (2015). CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization. Computational Optimization and Applications, 60(3), 545-557. External link
Gould, N. I. M., Orban, D., & Toint, P. L. (2014, January). An interior-point 1-penalty method for nonlinear optimization [Paper]. 3rd International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOIII-2014), Muscat, Oman. External link
Greif, C., Moulding, E., & Orban, D. (2014). Bounds on Eigenvalues of matrices arising from interior-point methods. SIAM Journal on Optimization, 24(1), 49-83. External link
Gould, N., Orban, D., & Rees, T. (2014). Projected Krylov methods for saddle-point systems. SIAM Journal on Matrix Analysis and Applications, 35(4), 1329-1343. External link
Gould, N. I. M., Orban, D., & Robinson, D. P. (2013). Trajectory-following methods for large-scale degenerate convex quadratic programming. Mathematical Programming Computation, 5(2), 113-142. External link
Gould, N. I. M., Orban, D., & Robinson, D. P. (2011). Trajectory-Following Methods for Large-Scale Degenerate Convex Quadratic Programming. (Technical Report n° G-2011-50). External link
Gould, N. I. M., Orban, D., & Toint, P. L. (2008). LANCELOT_SIMPLE: A Simple Interface for LANCELOT-B. (Technical Report n° G-2008-11). External link
Gould, N., Orban, D., & Toint, P. (2005). Numerical methods for large-scale nonlinear optimization. Acta Numerica, 14, 299-361. External link
Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2005). Sensitivity of trust-region algorithms to their parameters. 4OR, 3(3), 227-241. External link
Gould, N. I. M., Orban, D., & Toint, P. L. (2003). CUTEr and SifDec: A Constrained and Unconstrained Testing Environment, Revisited. ACM Transactions on Mathematical Software, 29(4), 373-394. External link
Gould, N. I. M., Orban, D., & Toint, P. L. (2003). GALAHAD, a Library of Thread-safe Fortran 90 Packages for Large-scale Nonlinear Optimization. ACM Transactions on Mathematical Software, 29(4), 353-372. External link
Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2002). Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Mathematical Programming, 92(3), 481-508. External link
Gould, N. I. M., Orban, D., & Toint, P. L. (2002). Results from a Numerical Evaluation of LANCELOT B. (Technical Report n° NAGIR-2002-1). External link
Gould, N. I. M., Orban, D., Sartenaer, A., & Toint, P. L. (2001). Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming. SIAM Journal on Optimization, 11(4), 974-1002. External link
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2024). An inexact augmented Lagrangian algorithm for unsymmetric saddle-point systems. (Technical Report n° G-2024-30). External link
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). On GSOR, the Generalized Successive Overrelaxation Method for Double Saddle-Point Problems. SIAM Journal on Scientific Computing, 45(5), A2185-A2206. External link
Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems. Optimization Methods & Software, 38(5), 887-913. External link
Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). On GSOR, the generalized successive overrelaxation method for double saddle-point problems. (Technical Report n° G-2022-35). External link
Huang, N., Dai, Y.-D., Orban, D., & Saunders, M. A. (2022). A semi-conjugate gradient method for solving unsymmetric positive definite linear systems. (Technical Report n° G-2022-25). External link
Harvey, J.-P., Eriksson, G., Orban, D., & Chartrand, P. (2013). Global Minimization of the Gibbs Energy of Multicomponent Systems Involving the Presence of Order/Disorder Phase Transitions. American Journal of Science, 313(3), 199-241. External link
Harvey, J.-P., Chartrand, P., Eriksson, G., & Orban, D. (2010, September). Gibbs energy minimization challenges using implicit variables solution models [Paper]. Discussion meeting on thermodynamics of alloys (TOFA 2010), Porto, Portugal. External link
Leconte, G., & Orban, D. (2024). RipQP: A multi-precision regularized predictor-corrector method for convex quadratic optimization. (Technical Report n° G-2021-03). External link
Leconte, G., & Orban, D. (2024). An interior-point trust-region method for nonsmooth regularized bound-constrained optimization. (Technical Report n° G-2024-17). External link
Leconte, G., & Orban, D. (2024). The indefinite proximal gradient method. Computational Optimization and Applications, 43 pages. External link
Leconte, G., & Orban, D. (2023). The indefinite proximal gradient method. (Technical Report n° G-2023-37). External link
Leconte, G., & Orban, D. (2023). Complexity of trust-region with unbounded Hessian approximations for smooth and nonsmooth optimization. (Technical Report n° G-2023-65). External link
Lakhmiri, D., Orban, D., & Lodi, A. (2022). A stochastic proximal method for nonsmooth regularized finite sum optimization. (Technical Report n° G-2022-27). External link
Lotfi, S., Orban, D., & Lodi, A. (2021). Stochastic adaptive regularization with dynamic sampling for machine learning. (Technical Report n° G-2020-51). External link
Lotfi, S., Bonniot de Ruisselet, T., Orban, D., & Lodi, A. (2020). Stochastic damped L-BFGS with controlled norm of the Hessian approximation. (Technical Report n° 2020-52). External link
Monnet, D., & Orban, D. (2025). A multi-precision quadratic regularization method for unconstrained optimization with rounding error analysis. Computational Optimization and Applications, 35 pages. External link
Montoison, A., Orban, D., & Saunders, M. A. (2025). MinAres: An Iterative Solver for Symmetric Linear Systems. SIAM Journal on Matrix Analysis and Applications, 46(1), 509-529. External link
Migot, T., Orban, D., & Siqueira, A. S. (2024). JSOSuite.jl: Solving continuous optimization problems with JuliaSmoothOptimizers. JuliaCon Proceedings, 6(63), 161-161. Available
Migot, T., Orban, D., & Soares Siquiera, A. (2024). JSOSuite.jl: Solving continuous optimization problems with JuliaSmoothOptimizers. (Technical Report n° G-2024-52). External link
Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. The Journal of Open Source Software, 8(89), 5187-5187. Available
Monnet, D., & Orban, D. (2023). A multi-precision quadratic regularization method for unconstrained optimization with rouding error analysis. (Technical Report n° G-2023-18). External link
Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. (Technical Report n° G-2022-50). External link
Montoison, A., & Orban, D. (2023). GPMR : an iterative method for unsymmetric partitioned lliear systems. SIAM Journal on Matrix Analysis and Applications, 44(1), 293-311. External link
Montoison, A., Orban, D., & Saunders, M. A. (2023). MinAres : an iterative solver for symmetric linear systems. (Technical Report n° G-2023-40). External link
Migot, T., Orban, D., & Soares Siquiera, A. (2022). PDENLPModels.jl: An NLPModel API for optimization problems with PDE-constraints. (Technical Report n° G-2022-42). External link
Migot, T., Orban, D., & Siqueira, A. S. (2022). DCISolver.jl: A Julia Solver for Nonlinear Optimization using Dynamic Control of Infeasibility. Journal of Open Source Software, 7(70), 4 pages. External link
Migot, T., Orban, D., & Soares Siqueira, A. (2022). PDENLP models.jl : an NLP model API for optimization problems with PDE-constraints. Journal of Open Source Software, 5 pages. Available
Migot, T., Orban, D., & Soares Siquiera, A. (2021). DCISolver.jl: A Julia solver for nonlinear optimization using dynamic control of infeasibility. (Technical Report n° G-2021-67). External link
Montoison, A., & Orban, D. (2021). GPMR: An iterative method for unsymmetric partitioned linear systems. (Technical Report n° G-2021-62). External link
Montoison, A., & Orban, D. (2021). TriCG and TriMR: Two iterative methods for symmetric and quasi-definite systems. (Technical Report n° G-2020-41). External link
Ma, D., Orban, D., & Saunders, M. A. (2021). A Julia implementation of Algorithm NCL for constrained optimization. (Technical Report n° 2021-02). External link
Ma, D., Orban, D., & Saunders, M. A. (2020, January). A Julia Implementation of Algorithm NCL for Constrained Optimization [Paper]. 5th International Conference on Numerical Analysis and Optimization: Theory, Methods, Applications and Technology Transfer (NAOV 2020), Muscat, Oman. External link
Montoison, A., & Orban, D. (2021). TRICG and TRIMR: Two iterative methods for symmetric quasi-definite systems. SIAM Journal on Scientific Computing, 43(4), A2502-A2525. External link
Montoison, A., & Orban, D. (2020). BILQ: An iterative method for nonsymmetric linear systems with a quasi-minimum error property. SIAM Journal on Matrix Analysis and Applications, 41(3), 1145-1166. External link
Mestdagh, G., Goussard, Y., & Orban, D. (2020). Scaled projected-directions methods with application to transmission tomography. Optimization and Engineering, 21(4), 1537-1561. External link
Mestdagh, G., Goussard, Y., & Orban, D. (2019). Scaled projected-directions methods with application to transmission tomography. (Technical Report n° G-2019-60). External link
Montoison, A., & Orban, D. (2019). BiLQ: An iterative method for nonsymmetric linear systems with a quasi-minimum property. (Technical Report n° G-2019-71). External link
Ma, D., Judd, K. L., Orban, D., & Saunders, M. A. (2017, January). Stabilized optimization via an NCL algorithm [Paper]. 4th International Conference on Numerical Analysis and Optimization (NAO-IV 2017), Muscat, Oman. External link
Ma, D., Judd, K., Orban, D., & Saunders, M. A. (2017). Stabilized optimization via an NCL algorithm. (Technical Report n° G-2017-108). External link
Menvielle, N., Goussard, Y., Orban, D., & Soulez, G. (2005, August). Reduction of beam-hardening artifacts in X-ray CT [Paper]. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. External link
Orban, D. (2022). Computing a sparse projection into a box. (Technical Report n° G-2022-12). External link
Orban, D., & Siqueira, A. S. (2020). A regularization method for constrained nonlinear least squares. Computational Optimization and Applications, 76(3), 961-989. External link
Orban, D., & Siqueira, A. S. (2019). A regularization method for constrained nonlinear least squares. (Technical Report n° G-2019-17). External link
Orban, D. (2018). Introduction to computation and programming using Python, Second edition, with application to understanding data (review). SIAM Review, 60(2), 483-485. External link
Orban, D., & Arioli, M. (2017). Iterative solution of symmetric quasi-definite linear systems. External link
Orban, D. (2015). A Collection of Linear Systems Arising from Interior-Point Methods for Quadratic Optimization. (Technical Report n° G-2015-117). External link
Orban, D. (2015). Limited-memory LDL⊤ factorization of symmetric quasi-definite matrices with application to constrained optimization. Numerical Algorithms, 70(1), 9-41. External link
Orban, D. (2015). Sqd-Collection: Initial Release [Dataset]. External link
Orban, D. (2014). The Projected Golub-Kahan Process for Constrained Linear Least-Squares Problems. (Technical Report n° G-2014-15). External link
Orban, D. (2011). Templating and Automatic Code Generation for Performance with Python. (Technical Report n° G-2011-30). External link
Orban, D. (2009). The Lightning AMPL Tutorial. A Guide for Nonlinear Optimization Users. (Technical Report n° G-2009-66). External link
Orban, D. (2008). Projected Krylov Methods for Unsymmetric Augmented Systems. (Technical Report n° G-2008-46). External link
Raynaud, P., Orban, D., & Bigeon, J. (2023). Partially-separable loss to parallellize partitioned neural network training. (Technical Report n° G-2023-36). External link
Raynaud, P., Orban, D., & Bigeon, J. (2023). PLSR1 : a limited-memory partioned quasi-Newton optimizer for partially-separable loss functions. (Technical Report n° G-2023-41). External link
Raynaud, P., & Orban, D. (2023, September). Limited-memory stochastic partitioned quasi-newton training [Poster]. Edge Intelligence Workshop, Montreal, Qc, Canada (1 page). External link
Raymond, V., Soumis, F., & Orban, D. (2010). A new version of the improved primal simplex for degenerate linear programs. Computers & Operations Research, 37(1), 91-98. External link
Siqueira, A. S., & Orban, D. (2018, June). Developing new optimization methods with packages from the JuliaSmoothOptimizers organisation [Paper]. 2nd annual JuMP-Dev Workshop, Bordeaux, France (30 pages). Unavailable
Sinqueira, A. S., & Orban, D. (2018, July). A regularized interior-point method for constrained nonlinear least squares [Paper]. 12th Brazilian Workshop on Continuous Optimization, Foz do Iguaçu, Brazil. Unavailable
Towhidi, M., & Orban, D. (2016). Customizing the solution process of COIN-ORs linear solvers with Python. Mathematical Programming Computation, 8(4), 377-391. External link
Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), 391-408. External link
Wright, S. J., & Orban, D. (2002). Properties of the Log-Barrier Function on Degenerate Nonlinear Programs. Mathematics of Operations Research, 27(3), 585-613. External link