![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
AskariHemmat, M.H., Dupuis, T., Fournier, Y., El Zarif, N., Cavalcante, M., Perotti, M., Gurkaynak, F., Benini, L., Leduc-Primeau, F., Savaria, Y., & David, J. P. Quark: an integer RISC-V vector processor for sub-byte quantized DNN inference [Paper]. 2023 IEEE International Symposium on Circuits and Systems (ISCAS 2023), Monterey, CA, USA (5 pages). External link
Ardakani, A., Leduc-Primeau, F., Onizawa, N., Hanyu, T., & Gross, W. J. (2017). VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10), 2688-2699. External link
Ardakani, A., Leduc-Primeau, F., & Gross, W. J. (2016, March). Hardware implementation of FIR/IIR digital filters using integral stochastic computation [Paper]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016), Shanghai, China. External link
Ardakani, A., Leduc-Primeau, F., Onizawa, N., Hanyu, T., & Gross, W. J. (2016, September). VLSI implementation of deep neural networks using integral stochastic computing [Paper]. 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC 2016), Brest, France. External link
Brown, S., Nadal, J., & Leduc-Primeau, F. (2023, September). Low-Activity Gallager-B LDPC Decoding [Paper]. 12th International Symposium on Topics in Coding (ISTC 2023), Brest, France (5 pages). External link
Boga, K., Leduc-Primeau, F., Onizawa, N., Matsumiya, K., Hanyu, T., & Gross, W. J. (2016). A Generalized Stochastic Implementation of the Disparity Energy Model for Depth Perception. Journal of Signal Processing Systems, 90(5), 709-725. External link
Boga, K., Onizawa, N., Leduc-Primeau, F., Matsumiya, K., Hanyu, T., & Gross, W. J. (2015, October). Stochastic implementation of the disparity energy model for depth perception [Paper]. IEEE Workshop on Signal Processing Systems (SiPS 2015), Hangzhou, China (6 pages). External link
Condo, C., Giard, P., Leduc-Primeau, F., Sarkis, G., & Gross, W. J. (2018). A 9.52 dB NCG FEC Scheme and 162 b/Cycle Low-Complexity Product Decoder Architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(4), 1420-1431. External link
Condo, C., Leduc-Primeau, F., Sarkis, G., Giard, P., & Gross, W. J. (2016, December). Stall pattern avoidance in polynomial product codes [Paper]. IEEE Global Conference on Signal and Information Processing (GlobalSIP 2016), Washington, D.C.. External link
Dupuis, T., Fournier, Y., AskariHemmat, M.H., Zarif, N. E., Leduc-Primeau, F., David, J. P., & Savaria, Y. (2023, June). Sparq: A Custom RISC-V Vector Processor for Efficient Sub-Byte Quantized Inference [Paper]. 21st IEEE Interregional NEWCAS Conference (NEWCAS 2023), Edinburgh, United Kingdom (5 pages). External link
Dupraz, E., Leduc-Primeau, F., Cai, K., & Dolecek, L. (2023). Turning to Information Theory to Bring In-Memory Computing Into Practice. IEEE BITS the Information Theory Magazine, 13 pages. External link
Dermont, D. B., Nadal, J., & Leduc-Primeau, F. (2022, June). Single-Minimum LDPC Decoding Offset Optimization Methods [Paper]. 17th Canadian Workshop on Information Theory (CWIT 2022), Ottawa, ON, Canada. External link
Dupraz, E., & Leduc-Primeau, F. (2021). Noisy density evolution with asymmetric deviation models. IEEE Transactions on Communications, 69(3), 1403-1416. External link
Dupraz, E., Varshney, L. R., & Leduc-Primeau, F. (2021, October). Power-Efficient Deep Neural Networks with Noisy Memristor Implementation [Paper]. IEEE Information Theory Workshop (ITW 2021), Kanazawa, Japan (5 pages). External link
Dupraz, E., Leduc-Primeau, F., & Gagnon, F. (2018, December). Low-Latency LDPC Decoding Achieved by Code and Architecture Co-Design [Paper]. International Symposium on Turbo Codes & Iterative Information Processing (ISTC 2018), Hong Kong, Chine. External link
El‐Sayegh, B., Dumoulin, C., Leduc-Primeau, F., & Sawan, M. (2024). Improving pelvic floor muscle training with AI: a novel quality assessment system for pelvic floor dysfunction. Sensors, 24(21), 6937 (23 pages). Available
El-Sayegh, B., Cacciari, L. P., Leduc-Primeau, F., Sawan, M., & Dumoulin, C. (2022). The state of pelvic floor muscle dynamometry: A scoping review [Discussion or Letter]. Neurourology and Urodynamics, 42(2), 478-499. External link
El-Sayegh, B., Dumoulin, C., Ali, M., Assaf, H., De Jong, J., Sawan, M., & Leduc-Primeau, F. (2022). Portable Dynamometer-Based Measurement of Pelvic Floor Muscle Force. IEEE Journal of Translational Engineering in Health and Medicine, 11, 44-53. External link
Gross, W. J., Leduc-Primeau, F., Hemati, S., & Mannor, S. (2014). Method and system for decoding. (Patent no. US8898537). External link
Gross, W. J., Hemati, S., Mannor, S., Naderi, A., & Leduc-Primeau, F. (2014). Method and system for decoding. (Patent no. US8677227). External link
Hojatian, H., Mlika, Z., Nadal, J., Frigon, J.-F., & Leduc-Primeau, F. (2024). Learning energy-efficient transmitter configurations for massive MIMO beamforming. IEEE Transactions on Machine Learning in Communications and Networking, 2, 939-955. Available
Henwood, S., Savaria, Y., & Leduc-Primeau, F. (2024, November). MemNAS: Super-net Neural Architecture Search for Memristor-based DNN Accelerators [Paper]. IEEE Workshop on Signal Processing Systems (SiPS 2024), Cambridge, MA, USA (6 pages). External link
Humblet, E., Dupuis, T., Fournier, Y., AskariHemmat, M. H., Leduc-Primeau, F., David, J. P., & Savaria, Y. (2024, August). MSPARQ: A RISC-V Vector Processor Array Optimized for Low-Resolution Neural Networks [Paper]. IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS 2024), Springfield, MA, USA. External link
Hojatian, H., Nadal, J., Frigon, J.-F., & Leduc-Primeau, F. (2022). Decentralized Beamforming for Cell-Free Massive MIMO with Unsupervised Learning. IEEE Communications Letters, 26(5), 1042-1046. External link
Hojatian, H., Nadal, J., Frigon, J.-F., & Leduc-Primeau, F. (2022, December). Flexible Unsupervised Learning for Massive MIMO Subarray Hybrid Beamforming [Paper]. IEEE Global Communications Conference (GLOBECOM 2022), Rio de Janeiro, Brazil. External link
Hojatian, H., Nadal, J., Frigon, J.-F., & Leduc-Primeau, F. (2021). Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming. IEEE Transactions on Wireless Communications, 20(11), 7086-7099. External link
Henwood, S., Leduc-Primeau, F., & Savaria, Y. (2020, August). Layerwise noise maximisation to train low-energy deep neural networks [Paper]. 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS 2020), Genova, Italy. External link
Hojatian, H., Ha, V. N., Nadal, J., Frigon, J.-F., & Leduc-Primeau, F. (2020, June). RSSI-Based Hybrid Beamforming Design with Deep Learning [Paper]. IEEE International Conference on Communications (ICC 2020), Dublin, Ireland (6 pages). External link
Hacene, G. B., Leduc-Primeau, F., Soussia, A. B., Gripon, V., & Gagnon, F. (2019, May). Training modern deep neural networks for memory-fault robustness [Paper]. IEEE International Symposium on Circuits and Systems (ISCAS 2019), Sapporo, Japan (5 pages). External link
Hemati, S., Leduc-Primeau, F., & Gross, W. J. (2016). A Relaxed Min-Sum LDPC Decoder With Simplified Check Nodes. IEEE Communications Letters, 20(3), 422-425. External link
Kern, J., Henwood, S., Torcato Mordido, G. F., Dupraz, E., Aissa-El-Bey, A., Savaria, Y., & Leduc-Primeau, F. (2024). Fast and Accurate Output Error Estimation for Memristor-Based Deep Neural Networks. IEEE Transactions on Signal Processing, 72, 1205-1218. External link
Karkan, A. H., Hojatian, H., Frigon, J.-F., & Leduc-Primeau, F. (2024, May). SAGE-HB: Swift Adaptation and Generalization in Massive MIMO Hybrid Beamforming [Paper]. 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN 2024), Stockhom, Sweden. External link
Kern, J., Henwood, S., Torcato Mordido, G. F., Dupraz, E., Aissa-El-Bey, A., Savaria, Y., & Leduc-Primeau, F. (2022, June). MemSE: Fast MSE Prediction for Noisy Memristor-Based DNN Accelerators [Paper]. IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) - Intelligent Technology in the Post-Pandemic Era, Incheon, South Korea. External link
Kern, J., Dupraz, E., Aissa-El-bey, A., Varshney, L. R., & Leduc-Primeau, F. (2022). Optimizing the Energy Efficiency of Unreliable Memories for Quantized Kalman Filtering. Sensors, 22(3), 20 pages. External link
Kern, J., Dupraz, E., Aissa-El-Bey, A., & Leduc-Primeau, F. (2021, June). Improving the energy-efficiency of a Kalman filter using unreliable memories [Paper]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2021), Toronto, Ont.. External link
Leduc-Primeau, F., Hemati, S., Gaudet, V. C., & Gross, W. J. (2019). Stochastic Decoding of Error-Correcting Codes. In Gross, W. J., & Gaudet, V. C. (eds.), Stochastic Computing: Techniques and Applications (pp. 201-215). External link
Leduc-Primeau, F., Kschischang, F. R., & Gross, W. J. (2018). Modeling and Energy Optimization of LDPC Decoder Circuits With Timing Violations. IEEE Transactions on Communications, 66(3), 932-946. External link
Leduc-Primeau, F. (2016). Designing energy-efficient systems by exploiting error-correction codes [Ph.D. Thesis, McGill University]. External link
Leduc-Primeau, F., Gripon, V., Rabbat, M. G., & Gross, W. J. (2016). Fault-Tolerant Associative Memories Based on c-Partite Graphs. IEEE Transactions on Signal Processing, 64(4), 829-841. External link
Leduc-Primeau, F., & Gross, W. J. (2016, September). Finite-length quasi-synchronous LDPC decoders [Paper]. 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC 2016), Brest, France. External link
Leduc-Primeau, F., Kschischang, F. R., & Gross, W. J. (2015, June). Energy optimization of LDPC decoder circuits with timing violations [Paper]. IEEE International Conference on Communications (ICC 2015), London, UK. External link
Leduc-Primeau, F., Gaudet, V. C., & Gross, W. J. (2015). Stochastic Decoders for LDPC Codes. In Chavet, C., & Coussy, P. (eds.), Advanced Hardware Design for Error Correcting Codes (pp. 105-128). External link
Leduc-Primeau, F., Gripon, V., Rabbat, M. G., & Gross, W. J. (2014, May). Cluster-based associative memories built from unreliable storage [Paper]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy. External link
Leduc-Primeau, F., Hemati, S., Mannor, S., & Gross, W. J. (2013). Relaxed Half-Stochastic Belief Propagation. IEEE Transactions on Communications, 61(5), 1648-1659. External link
Leduc-Primeau, F., Hemati, S., Mannor, S., & Gross, W. J. (2012). Dithered Belief Propagation Decoding. IEEE Transactions on Communications, 60(8), 2042-2047. External link
Leduc-Primeau, F., & Gross, W. J. (2012, October). Faulty Gallager-B decoding with optimal message repetition [Paper]. 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton 2012), Monticello, IL. External link
Leduc-Primeau, F., Raymond, A. J., Giard, P., Cushon, K., Thibeault, C., & Gross, W. J. (2012, October). High-throughput LDPC decoding using the RHS algorithm [Paper]. Conference on Design and Architectures for Signal and Image Processing, Karlsruhe, Germany (6 pages). External link
Leduc-Primeau, F., Hemati, S., Mannor, S., & Gross, W. J. (2010, December). Lowering Error Floors Using Dithered Belief Propagation [Paper]. IEEE Global Telecommunications Conference (GLOBECOM 2010), Miami, FL. External link
Leduc-Primeau, F. (2010). A relaxed half-stochastic decoding algorithm for LDPC codes [Master's Thesis, McGill University]. External link
Leduc-Primeau, F., Hemati, S., Gross, W. J., & Mannor, S. (2009, November). A Relaxed Half-Stochastic Iterative Decoder for LDPC Codes [Paper]. IEEE Global Telecommunications Conference (GLOBECOM 2009), Honolulu, HI (6 pages). External link
Mlika, Z., Do, T. N., Larabi, A., Vo, J. D., Frigon, J.-F., & Leduc-Primeau, F. (2024, October). Online energy-efficient beam bandwidth partitioning in mmwave mobile networks [Paper]. IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA (6 pages). External link
Nadal, J., Yaoumi, M., Dupraz, E., Guilloud, F., & Leduc-Primeau, F. (2023, September). Energy Optimization of Faulty Quantized Min-Sum LDPC Decoders [Paper]. 12th International Symposium on Topics in Coding (ISTC 2023), Brest, France (5 pages). External link
Nadal, J., Brown, S., Dupraz, E., & Leduc-Primeau, F. (2021, August). Towards an Accurate High-Level Energy Model for LDPC Decoders [Paper]. 11th International Symposium on Topics in Coding (ISTC 2021), Montréal, QC, Canada (6 pages). External link
Nadal, J., Fiorentino, M., Dupraz, E., & Leduc-Primeau, F. (2020, June). A Deeply Pipelined, Highly Parallel and Flexible LDPC Decoder [Paper]. 18th IEEE International New Circuits and Systems Conference (NEWCAS 2020), Montréal, QC, Canada. External link
Nadal, J., Leduc-Primeau, F., Nour, C. A., & Baghdadi, A. (2020). Overlap-Save FBMC Receivers. IEEE Transactions on Wireless Communications, 19(8), 5307-5320. External link
Nadal, J., Leduc-Primeau, F., Nour, C. A., & Baghdadi, A. (2018, May). A Block FBMC Receiver Designed for Short Filters [Paper]. IEEE International Conference on Communications (ICC 2018), Kansas City, MO, USA (6 pages). External link
Rohman, S. T., & Leduc-Primeau, F. (2024, November). Fast Energy Optimization of On-Chip ECC Memories [Paper]. IEEE Workshop on Signal Processing Systems (SiPS 2024), Cambridge, MA, USA. External link
Vialatte, J.-C., & Leduc-Primeau, F. (2017, February). A Study of Deep Learning Robustness Against Computation Failures [Paper]. 9th International Conference on Advanced Cognitive Technologies and Applications, Athens, Greece. External link
Yaoumi, M., Dupraz, E., Leduc-Primeau, F., & Guilloud, F. (2020). Energy optimization of quantized min-sum decoders for protograph-based LDPC codes. [Annales des Telecommunications]. External link
Yaoumi, M., Leduc-Primeau, F., Dupraz, E., & Guilloud, F. (2019, August). Optimization of protograph LDPC codes based on high-level energy models [Paper]. 16th International Symposium on Wireless Communication Systems, (ISWCS 2019), Oulu, Finland. External link
Zhang, Y., Savaria, Y., Sawan, M., & Leduc-Primeau, F. (2024, June). S³ 1DCNN: A Compact Stacked Spectral-Spatial Attention 1DCNN for Seizure Prediction with Wearables [Paper]. 22nd IEEE Interregional NEWCAS Conference (NEWCAS 2024), Sherbrooke, QC, Canada. External link
Zhang, Y., Savaria, Y., Zhao, S., Torcato Mordido, G. F., Sawan, M., & Leduc-Primeau, F. (2022, July). Tiny CNN for Seizure Prediction in Wearable Biomedical Devices [Paper]. 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2022), Glasgow, United Kingdom. External link
Zarif, N. E., Montazeri, L., Leduc-Primeau, F., & Sawan, M. (2021). Mobile-Optimized Facial Expression Recognition Techniques. IEEE Access, 9, 101172-101185. External link