<  Back to the Polytechnique Montréal portal

Training modern deep neural networks for memory-fault robustness

Ghouthi Boukli Hacene, François Leduc-Primeau, Amal Ben Soussia, Vincent Gripon and François Gagnon

Paper (2019)

An external link is available for this item
Department: Department of Electrical Engineering
Research Center: GR2M - Microelectronics and Microsystems Research Group
PolyPublie URL: https://publications.polymtl.ca/43651/
Conference Title: IEEE International Symposium on Circuits and Systems (ISCAS 2019)
Conference Location: Sapporo, Japan
Conference Date(s): 2019-05-26 - 2019-05-29
Publisher: IEEE
DOI: 10.1109/iscas.2019.8702382
Official URL: https://doi.org/10.1109/iscas.2019.8702382
Date Deposited: 18 Apr 2023 15:02
Last Modified: 25 Sep 2024 16:30
Cite in APA 7: Hacene, G. B., Leduc-Primeau, F., Soussia, A. B., Gripon, V., & Gagnon, F. (2019, May). Training modern deep neural networks for memory-fault robustness [Paper]. IEEE International Symposium on Circuits and Systems (ISCAS 2019), Sapporo, Japan (5 pages). https://doi.org/10.1109/iscas.2019.8702382

Statistics

Dimensions

Repository Staff Only

View Item View Item