![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Adiga Vasudeva, S., Dolz, J., & Lombaert, H. (2024). Anatomically-aware uncertainty for semi-supervised image segmentation. Medical Image Analysis, 91, 103011 (10 pages). External link
Abboud, Z., Lombaert, H., & Kadoury, S. (2024, October). Sparse Bayesian Networks: Efficient Uncertainty Quantification in Medical Image Analysis [Paper]. 27th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2024), Marrakesh, Morocco. External link
Adiga V, S., Dolz, J., & Lombaert, H. (2022). Attention-Based Dynamic Subspace Learners for Medical Image Analysis. IEEE Journal of Biomedical and Health Informatics, 26(9), 4599-4610. External link
Adiga Vasudeva, S., Dolz, J., & Lombaert, H. (2022, September). Leveraging Labeling Representations in Uncertainty-Based Semi-supervised Segmentation [Paper]. 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Singapore. External link
Anctil-Robitaille, B., Théberge, A., Jodoin, P.-M., Descoteaux, M., Desrosiers, C., & Lombaert, H. (2022). Manifold-aware synthesis of high-resolution diffusion from structural imaging. Frontiers in Neuroimaging, 1, 20 pages. Available
Anctil-Robitaille, B., Desrosiers, C., & Lombaert, H. (2020, October). Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis [Paper]. Computational Diffusion MRI 2020 (CDMRI 2020), 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru. External link
Ahmad, O., Lombaert, H., Parent, S., Labelle, H., & Cheriet, F. (2017). Spectral shape analysis of human torsos: Application to the evaluation of scoliosis surgery outcome. IEEE Journal of Biomedical and Health Informatics, 22(5), 1552-1560. External link
Ahmad, O., Lombaert, H., Parent, S., Labelle, H., Dansereau, J., & Cheriet, F. (2016, October). Longitudinal scoliotic trunk analysis via spectral representation and statistical analysis [Paper]. 1st International Workshop on Spectral and Shape Analysis in Medical Imaging (SeSAMI 2016), Athens, Greece. External link
Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., & Ben Ayed, I. (2022). Source-free domain adaptation for image segmentation. Medical Image Analysis, 82, 102617 (12 pages). External link
Bateson, M., Lombaert, H., & Ben Ayed, I. (2022, September). Test-Time Adaptation with Shape Moments for Image Segmentation [Paper]. 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Singapore. External link
Bateson, M., Dolz, J., Kervadec, H., Lombaert, H., & Ben Ayed, I. (2021). Constrained Domain Adaptation for Image Segmentation. IEEE Transactions on Medical Imaging, 40(7), 1875-1887. External link
Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., & Ben Ayed, I. (2020, October). Source-Relaxed Domain Adaptation for Image Segmentation [Paper]. 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru. External link
Bateson, M., Kervadec, H., Dolz, J., Lombaert, H., & Ben Ayed, I. (2019, October). Constrained Domain Adaptation for Segmentation [Paper]. 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), Shenzhen, China. External link
Bleton, H., Margeta, J., Lombaert, H., Delingette, H., & Ayache, N. (2015, October). Myocardial Infarct Localization Using Neighbourhood Approximation Forests [Paper]. 6th International Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2015), Munich, Germany. External link
Bhatia, K., & Lombaert, H. (2015). Machine Learning Meets Medical Imaging: First International Workshop, MLMMI 2015, Held in Conjunction with ICML 2015, Lille, France, July 11, 2015, Revised Selected Papers. External link
Bieth, M., Lombaert, H., Reader, A. J., & Siddiqi, K. (2013, September). Atlas Construction for Dynamic (4D) PET Using Diffeomorphic Transformations [Paper]. 16th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), Nagoya, Japan. External link
Delisle, P.-L., Anctil-Robitaille, B., Desrosiers, C., & Lombaert, H. (2021). Realistic image normalization for multi-Domain segmentation. Medical Image Analysis, 74, 102191 (14 pages). External link
Delisle, P.-L., Anctil-Robitaille, B., Desrosiers, C., & Lombaert, H. (2020, April). Adversarial Normalization for Multi Domain Image Segmentation [Paper]. 17th IEEE International Symposium on Biomedical Imaging (ISBI 2020), Iowa City, IA, USA. External link
Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., & Ben Ayed, I. (2019). HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation. IEEE Transactions on Medical Imaging, 38(5), 1116-1126. External link
Gaillochet, M., Desrosiers, C., & Lombaert, H. (2024, October). Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision [Paper]. International Workshop on Foundation Models for General Medical AI (MedAGI 2024), Marrakesh, Morocco. Published in Lecture notes in computer science. External link
Gaillochet, M., Desrosiers, C., & Lombaert, H. (2023). Active learning for medical image segmentation with stochastic batches. Medical Image Analysis, 90, 102958 (11 pages). External link
Gopinath, K., Desrosiers, C., & Lombaert, H. (2023). Learning joint surface reconstruction and segmentation, from brain images to cortical surface parcellation. Medical Image Analysis, 90, 102974 (9 pages). External link
Gopinath, K., Desrosiers, C., & Lombaert, H. (2022). Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(2), 864-876. External link
Galdran, A., Anjos, A., Dolz, J., Chakor, H., Lombaert, H., & Ayed, I. B. (2022). State-of-the-art retinal vessel segmentation with minimalistic models. Scientific Reports, 12(1), 6174 (13 pages). Available
Gaillochet, M., Desrosiers, C., & Lombaert, H. (2022, September). TAAL: Test-Time Augmentation for Active Learning in Medical Image Segmentation [Paper]. Second MICCAI Workshop on Data Augmentation, Labelling, and Imperfections (DALI 2022, MICCAI 2022), Singapore. External link
Gopinath, K., Desrosiers, C., & Lombaert, H. (2021, September). SegRecon: Learning Joint Brain Surface Reconstruction and Segmentation from Images [Paper]. 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Starsbourg, France. External link
Galdran, A., Dolz, J., Chakor, H., Lombaert, H., & Ben Ayed, I. (2020, October). Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images [Paper]. 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru. External link
Gopinath, K., Desrosiers, C., & Lombaert, H. (2020, October). Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation [Paper]. Second International Workshop, UNSURE 2020, and Third International Workshop GRAIL 2020, held in Conjunction with MICCAI 2020, Lima, Peru. External link
Galdran, A., Chelbi, J., Kobi, R., Dolz, J., Lombaert, H., ben Ayed, I., & Chakor, H. (2020). Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Translational Vision Science & Technology, 9(2), 34 (8 pages). External link
Gopinath, K., Desrosiers, C., & Lombaert, H. (2019, June). Adaptive Graph Convolution Pooling for Brain Surface Analysis [Paper]. 26th Biennal International Conference on Information Processing in Medical Imaging (IPMI 2019), Hong Kong, China. External link
Gopinath, K., Desrosiers, C., & Lombaert, H. (2019, July). Cortical parcellation via spectral graph convolutions [Abstract]. Medical Imaging with Deep Learning (MIDL 2019), London, UK (5 pages). External link
Gopinath, K., Desrosiers, C., & Lombaert, H. (2019). Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation. Medical Image Analysis, 54, 297-305. External link
Grady, L., Lombaert, H., Polimeni Rizzo, J., & Cheriet, F. (2015). Methods and systems for fast automatic brain matching via spectral correspondence. (Patent no. US8965077). External link
He, R., Gopinath, K., Desrosiers, C., & Lombaert, H. (2020, April). Spectral Graph Transformer Networks for Brain Surface Parcellation [Paper]. 17th IEEE International Symposium on Biomedical Imaging (ISBI 2020), Iowa City, IA, USA. External link
Karami, M., Lombaert, H., & Rivest-Hénault, D. (2023). Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning. Computerized Medical Imaging and Graphics, 104, 102165 (9 pages). External link
Lombaert, H., Criminisi, A., & Ayache, N. (2017, December). Spectral learning of surface data: ideas from medical imaging [Paper]. 31st Annual Conference on Neural Information Processing Systems (MED-NeurIPS/NIPS 2017), Long Beach, CA, USA (3 pages). Unavailable
Lombaert, H., Arcaro, M., Kastner, S., & Ayache, N. (2015, October). Brain transfer for the analysis of cortical data [Poster]. Society for Neuroscience Annual Meeting (SfN 2015), Chicago, IL, USA. External link
Lombaert, H., Arcaro, M., & Ayache, N. (2015, June). Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps [Paper]. 24th International Conference on Information Processing in Medical Imaging (IPMI 2015), Isle of Skye, Scotland, UK. External link
Lombaert, H., Criminisi, A., & Ayache, N. (2015, October). Spectral Forests: Learning of Surface Data, Application to Cortical Parcellation [Paper]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Munich, Germany. External link
Lombaert, H., Zikic, D., Criminisi, A., & Ayache, N. (2014, September). Laplacian Forests: Semantic Image Segmentation by Guided Bagging [Paper]. 17th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2014), Boston, MA, USA. External link
Lombaert, H., Grady, L., Pennec, X., Ayache, N., & Cheriet, F. (2014). Spectral log-demons: Diffeomorphic image registration with very large deformations. International Journal of Computer Vision, 107(3), 254-271. External link
Lombaert, H., Sporring, J., & Siddiqi, K. (2013, June). Diffeomorphic Spectral Matching of Cortical Surfaces [Paper]. 23rd International Conference on Information Processing in Medical Imaging (IPMI 2013), Asimolar, CA, USA. External link
Lombaert, H., Grady, L., Polimeni, J. R., & Cheriet, F. (2013). FOCUSR: Feature oriented correspondence using spectral regularization -A method for precise surface matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2143-2160. External link
Lombaert, H., Grady, L., Pennec, X., Peyrat, J.-M., Ayache, N., & Cheriet, F. (2012, October). Groupwise spectral log-demons framework for atlas construction [Paper]. 2nd MICCAI Workshop on Medical Computer Vision (MICCAI-MCV 2012), Nice, France. External link
Lombaert, H., & Peyrat, J.-M. (2013, September). Joint Statistics on Cardiac Shape and Fiber Architecture [Paper]. 16th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), Nagoya, Japan. External link
Lombaert, H. (2012). Atlas Construction for Measuring the Variability of Complex Anatomical Structures [Ph.D. thesis, École Polytechnique de Montréal]. Available
Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., & Ayache, N. (2012). Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population. IEEE Transactions on Medical Imaging, 31(7), 1436-1447. External link
Lombaert, H., & Cheriet, F. (2012, July). Simultaneous image de-noising and registration using graph cuts: Application to corrupted medical images [Paper]. 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2012), Montréal, Québec. External link
Lombaert, H., Grady, L., Pennec, X., Ayache, N., & Cheriet, F. (2012, October). Spectral demons - Image registration via global spectral correspondence [Paper]. 12th European Conference on Computer Vision (ECCV 2012), Florence, Italy. External link
Lombaert, H., Peyrat, J.-M., Fanton, L., Cheriet, F., Delingette, H., Ayache, N., Clarysse, P., Magnin, I., & Croisille, P. (2011, September). Statistical atlas of human cardiac fibers: Comparison with abnormal hearts [Paper]. 2nd International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges (STACOM 2011), Toronto, Canada. External link
Lombaert, H., Peyrat, J.-M., Fanton, L., Cheriet, F., Delingette, H., Ayache, N., Clarysse, P., Magnin, I., & Croisille, P. (2011, September). Variability of the human cardiac laminar structure [Paper]. 2nd International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges (STACOM 2011), Toronto, Canada. External link
Lombaert, H., Sun, Y., & Cheriet, F. (2011, February). Fast 4D segmentation of large datasets using graph cuts [Paper]. Medical Imaging 2011: Image Processing, Lake Buena Vista, FL, United states (7 pages). External link
Lombaert, H., Grady, L., Polimeni, J. R., & Cheriet, F. (2011, July). Fast brain matching with spectral correspondence [Paper]. 22nd International Conference on Information Processing in Medical Imaging (IPMI 2011), Kloster Irsee, Germany. External link
Lombaert, H., Sauer, F., Sun, Y., & Xu, C. (2011). Methods and apparatus for interactive 4-dimensional (4D) virtual endoscopy. (Patent no. US8007437). External link
Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Clarysse, P., Delingette, H., & Ayache, N. (2011, May). Statistical analysis of the human cardiac fiber architecture from DT-MRI [Paper]. 6th International Conference on Functional Imaging and Modeling of the Heart, FIMH 2011, New York City, NY, United states. External link
Lombaert, H., & Cheriet, F. (2010, August). Geodesic Thin Plate Splines for Image Segmentation [Paper]. 20th International Conference on Pattern Recognition (ICPR 2010), Istanbul. External link
Lombaert, H., & Cheriet, F. (2010, April). Spatio-temporal segmentation of the heart in 4D MRI images using graph cuts with motion cues [Paper]. 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, The Netherlands. External link
Lombaert, H., Sun, Y., & Cheriet, F. (2007, August). Landmark-based non-rigid registration via graph cuts [Paper]. 4th International Conference on Image Analysis and Recognition (ICIAR 2007), Montréal, Québec. External link
Murugesan, B., Vasudeva, S. A., Liu, B., Lombaert, H., Ayed, I. B., & Dolz, J. (2025). Neighbor-aware calibration of segmentation networks with penalty-based constraints. Medical Image Analysis, 103501-103501. External link
Murugesan, B., Adiga Vasudeva, S., Liu, B., Lombaert, H., Ben Ayed, I., & Dolz, J. (2023, October). Trust Your Neighbours: Penalty-Based Constraints for Model Calibration [Paper]. 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023), Vancouver, Canada. External link
Molléro, R., Neumann, D., Rohé, M.-M., Datar, M., Lombaert, H., Ayache, N., Comaniciu, D., Ecabert, O., Chinali, M., Rinelli, G., Pennec, X., Sermesant, M., & Mansi, T. (2015, June). Propagation of Myocardial Fibre Architecture Uncertainty on Electromechanical Model Parameter Estimation: A Case Study [Paper]. 8th International Conference on Functional Imaging and Modeling of the Heart (FIMH 2015), Maastricht, The Netherlands. External link
Novosad, P., Bieth, M., Gravel, P., Lombaert, H., Siddiqi, K., & Reader, A. J. (2013, October). Applying a [¹¹C]raclopride template to automated binding potential estimation in HRRT brain PET [Paper]. IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Korea (8 pages). External link
Orasanu, E., Melbourne, A., Cardoso, M. J., Lombaert, H., Kendall, G. S., Robertson, N. J., Marlow, N., & Ourselin, S. (2016). Cortical folding of the preterm brain: a longitudinal analysis of extremely preterm born neonates using spectral matching. Brain and Behavior, 6(8), e00488 (17 pages). External link
Orasanu, E., Bazin, P.-L., Melbourne, A., Lorenzi, M., Lombaert, H., Robertson, N. J., Kendall, G., Weiskopf, N., Marlow, N., & Ourselin, S. (2016, October). Longitudinal Analysis of the Preterm Cortex Using Multi-modal Spectral Matching [Paper]. 19th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016), Athens, Greece. External link
Orasanu, E., Melbourne, A., Modat, M., Lorenzi, M., Lombaert, H., Eaton-Rosen, Z., Robertson, N. J., Kendall, G., Marlow, N., & Ourselin, S. (2016, May). Mapping longitudinal whiter matter changes in extremely preterm born indants [Paper]. ISMRM 24th Annual Meeting and Exhibition (ISMRM 2016), Singapore. External link
Orasanu, E., Melbourne, A., Lombaert, H., Cardoso, M. J., Johnsen, S. F., Kendall, G. S., Robertson, N. J., Marlow, N., & Ourselin, S. (2014, September). Prefrontal Cortical Folding of the Preterm Brain: A Longitudinal Analysis of Preterm-Born Neonates [Paper]. 3rd International Workshop on Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data (STIA 2014), Boston, MA, USA. External link
Orasanu, E., Melbourne, A., Lorenzi, M., Modat, M., Lombaert, H., Eaton-Rosen, Z., Robertson, N. J., Kendall, G., Marlow, N., & Ourselin, S. (2015, October). Tensor spectral matching of diffusion weighted images [Paper]. MICCAI 2015 Workshop: Spectral Analysis in Medical Imaging (SAMI 2015), Munich, Germany. Published in The MIDAS Journal. External link
Piuze, E., Lombaert, H., Sporring, J., Strijkers, G. J., Bakermans, A. J., & Siddiqi, K. (2013, June). Atlases of Cardiac Fiber Differential Geometry [Paper]. 7th International Conference on Functional Imaging and Modeling of the Heart (FIMH 2013), London, UK. External link
Piuze, E., Lombaert, H., Sporring, J., & Siddiqi, K. (2013, September). Cardiac Fiber Inpainting Using Cartan Forms [Paper]. 16th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), Nagoya, Japan. External link
Rezanejad, M., Khodadad, M., Mahyar, H., Lombaert, H., Gruninger, M., Walther, D., & Siddiqi, K. (2022, June). Medial Spectral Coordinates for 3D Shape Analysis [Paper]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022), New Orleans, LA, USA. External link
Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., & Rekik, I. (eds.) (2020). Shape in Medical Imaging: International Workshop, ShapeMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings. External link
Reddy, C., Gopinath, K., & Lombaert, H. (2019, July). Brain tumor segmentation using topological loss in convolutional networks [Abstract]. Medical Imaging with Deep Learning (MIDL 2019), London, UK (4 pages). External link
Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., & Egger, B. (eds.) (2018). Shape in Medical Imaging: International Workshop, ShapeMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings. External link
Reuter, M., Wachinger, C., & Lombaert, H. (eds.) (2016). Spectral and Shape Analysis in Medical Imaging: First International Workshop, SeSAMI 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Revised Selected Papers. External link
Shakeri, M., Lombaert, H., Tripathi, S., & Kadoury, S. (2016, October). Deep spectral-based shape features for Alzheimers disease classification [Paper]. 1st International Workshop on Spectral and Shape Analysis in Medical Imaging (SeSAMI 2016), Athens, Greece. External link
Shakeri, M., Lombaert, H., Datta, A. N., Oser, N., Létourneau-Guillon, L., Lapointe, L. V., Martin, F., Malfait, D., Tucholka, A., Lippé, S., & Kadoury, S. (2016). Statistical shape analysis of subcortical structures using spectral matching. Computerized Medical Imaging and Graphics, 52, 58-71. External link
Shakeri, M., Lombaert, H., & Kadoury, S. (2015, July). Classification of Alzheimer's Disease Using Discriminant Manifolds of Hippocampus Shapes [Paper]. 1st International Workshop on Machine Learning Meets Medical Imaging (MLMMI 2015), Lille, France. External link
Shakeri, M., Lombaert, H., Lippé, S., & Kadoury, S. (2014, February). Groupwise shape analysis of the hippocampus using spectral matching [Paper]. SPIE Medical Imaging, San Diego, California, United States. External link
Shi, W., Lombaert, H., Bai, W., Ledig, C., Zhuang, X., Marvao, A., Dawes, T., O’Regan, D., & Rueckert, D. (2014, September). Multi-atlas Spectral PatchMatch: Application to Cardiac Image Segmentation [Paper]. 17th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2014), Boston, MA, USA. External link
Sun, Y., Lombaert, H., Grady, L., & Xu, C. (2014). Multilevel image segmentation. (Patent no. US8913830). External link
Sun, Y., Lombaert, H., & Cheriet, F. (2012). Fast 4D segmentation of large datasets using graph cuts. (Patent no. US8131075). External link
Vasudeva, S. A., Dolz, J., & Lombaert, H. (2023, July). GeoLS: Geodesic Label Smoothing for Image Segmentation [Paper]. Medical Imaging with Deep Learning (MIDL 2023), Nashville, TN, USA. Published in Proceedings of Machine Learning Research, 227. External link