<  Back to the Polytechnique Montréal portal

Wide-field optical spectroscopy system integrating reflectance and spatial frequency domain imaging to measure attenuation-corrected intrinsic tissue fluorescence in radical prostatectomy specimens

Emile Beaulieu, Audrey Laurence, Mirela Birlea, Guillaume Sheehy, Leticia Angulo-Rodriguez, Mathieu Latour, Roula Albadine, Fred Saad, Dominique Trudel and Frédéric Leblond

Article (2020)

[img]
Preview
Published Version
Terms of Use: OSA Open Access Publishing Agreement.
Download (2MB)
Cite this document: Beaulieu, E., Laurence, A., Birlea, M., Sheehy, G., Angulo-Rodriguez, L., Latour, M., ... Leblond, F. (2020). Wide-field optical spectroscopy system integrating reflectance and spatial frequency domain imaging to measure attenuation-corrected intrinsic tissue fluorescence in radical prostatectomy specimens. Biomedical Optics Express, 11(4), p. 2052-2072. doi:10.1364/boe.388482
Show abstract Hide abstract

Abstract

The development of a multimodal optical imaging system is presented that integrates endogenous fluorescence and diffuse reflectance spectroscopy with single-wavelength spatial frequency domain imaging (SFDI) and surface profilometry. The system images specimens at visible wavelengths with a spatial resolution of 70 microm, a field of view of 25 cm(2) and a depth of field of approximately 1.5 cm. The results of phantom experiments are presented demonstrating the system retrieves absorption and reduced scattering coefficient maps using SFDI with <6% reconstruction errors. A phase-shifting profilometry technique is implemented and the resulting 3-D surface used to compute a geometric correction ensuring optical properties reconstruction errors are maintained to <6% in curved media with height variations <20 mm. Combining SFDI-computed optical properties with data from diffuse reflectance spectra is shown to correct fluorescence using a model based on light transport in tissue theory. The system is used to image a human prostate, demonstrating its ability to distinguish prostatic tissue (anterior stroma, hyperplasia, peripheral zone) from extra-prostatic tissue (urethra, ejaculatory ducts, peri-prostatic tissue). These techniques could be integrated in robotic-assisted surgical systems to enhance information provided to surgeons and improve procedural accuracy by minimizing the risk of damage to extra-prostatic tissue during radical prostatectomy procedures and eventually detect residual cancer.

Uncontrolled Keywords

Diffuse reflectance; Diffuse reflectance spectroscopy; Elastic scattering; Imaging systems; Tissue characterization; Visible light;

Open Access document in PolyPublie
Subjects: 3100 Physique > 3110 Optique (voir aussi Dispositifs photoniques, 2505)
3100 Physique > 3112 Photonique
Department: Département de génie physique
Research Center: Non applicable
Grant number: CRSNG/NSERC, TransMedTech Institute, Mitacs, Canadian Institutes of Health Research
Date Deposited: 22 May 2020 15:18
Last Modified: 23 May 2020 01:20
PolyPublie URL: https://publications.polymtl.ca/5231/
Document issued by the official publisher
Journal Title: Biomedical Optics Express (vol. 11, no. 4)
Publisher: OSA Publishing
Official URL: https://doi.org/10.1364/boe.388482

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Dimensions

Repository Staff Only