![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Amine Elforaici, M. E., Montagnon, E., Azzi, F., Trudel, D., Nguyen, B., Turcotte, S., Tang, A., & Kadoury, S. (2022, March). Semi-Supervised Tumor Response Grade Classification from Histology Images of Colorectal Liver Metastases [Paper]. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI 2022), Kolkata, India (5 pages). External link
Bilic, P., Christ, P., Li, H. B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A., Jacobs, C., Mamani, G. E. H., Chartrand, G., Lohöfer, F., Holch, J. W., Sommer, W., Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M. M., Vivanti, R., ... Menze, B. (2023). The Liver Tumor Segmentation Benchmark (LiTS). Medical Image Analysis, 84, 102680 (24 pages). External link
Cheng, P. M., Montagnon, E., Yamashita, R., Pan, I., Cadrin-Chênevert, A., Romero, F. P., Chartrand, G., Kadoury, S., & Tang, A. (2021). Deep Learning: An Update for Radiologists. RadioGraphics, 41(5), 1427-1445. External link
Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., Kadoury, S., & Tang, A. (2017). Deep Learning: A Primer for Radiologists. RadioGraphics, 37(7), 2113-2131. External link
Drozdzal, M., Chartrand, G., Vorontsov, E., Shakeri, M., Di Jorio, L., Tang, A., Romero, A., Bengio, Y., Pal, C. J., & Kadoury, S. (2018). Learning normalized inputs for iterative estimation in medical image segmentation. Medical Image Analysis, 44, 1-13. External link
Elforaici, M. E. A., Montagnon, E., Romero, F. P., Le, W. T., Azzi, F., Trudel, D., Nguyen, B., Turcotte, S., Tang, A., & Kadoury, S. (2025). Semi-supervised ViT knowledge distillation network with style transfer normalization for colorectal liver metastases survival prediction. Medical Image Analysis, 99, 103346 (16 pages). External link
Elforaici, M. E. A., Azzi, F., Trudel, D., Nguyen, B., Montagnon, E., Tang, A., Turcotte, S., & Kadoury, S. (2024, May). Cell-Level GNN-Based Prediction of Tumor Regression Grade in Colorectal Liver Metastases From Histopathology Images [Paper]. 21st IEEE International Symposium on Biomedical Imaging (ISBI 2024), Athens, Greece (5 pages). External link
Gotra, A., Sivakumaran, L., Chartrand, G., Vu, K.-N., Vandenbroucke-Menu, F., Kauffmann, C., Kadoury, S., Gallix, B., de Guise, J. A., & Tang, A. (2017). Liver segmentation: indications, techniques and future directions. Insights into Imaging, 8(4), 377-392. Available
Gerard, M., Michaud, F., Bigot, A., Tang, A., Soulez, G., & Kadoury, S. (2017). Geometric modeling of hepatic arteries in 3D ultrasound with unsupervised MRA fusion during liver interventions. International Journal of Computer Assisted Radiology and Surgery, 12(6), 961-972. External link
Li, N., Fei, P., Tous, C., Rezaei Adariani, M., Hautot, M.-L., Ouedraogo, I., Hadjadj, A., Dimov, I. P., Zhang, Q., Lessard, S., Nosrati, Z., Ng, C. N., Saatchi, K., Hafeli, U. O., Tremblay, C., Kadoury, S., Tang, A., Martel, S., & Soulez, G. (2024). Human-scale navigation of magnetic microrobots in hepatic arteries. Science Robotics, 9(87), 8702. External link
Li, N., Tous, C., Dimov, I. P., Fei, P., Zhang, Q., Lessard, S., Moran, G., Jin, N., Kadoury, S., Tang, A., Martel, S., & Soulez, G. (2023). Design of a Patient-Specific Respiratory-Motion-Simulating Platform for In Vitro 4D Flow MRI. Annals of Biomedical Engineering, 51(5), 1028-1039. External link
Li, N., Tous, C., Dimov, I. P., Fei, P., Zhang, Q., Lessard, S., Tang, A., Martel, S., & Soulez, G. (2023). Design of a Low-cost, Self-adaptive and MRI-compatible Cardiac Gating System. IEEE Transactions on Biomedical Engineering, 70(11), 3126-3136. External link
Li, N., Tous, C., Dimov, I. P., Cadoret, D., Fei, P., Majedi, Y., Lessard, S., Nosrati, Z., Saatchi, K., Hafeli, U., Tang, A., Kadoury, S., Martel, S., & Soulez, G. (2022). Quantification and 3D localization of magnetically navigated superparamagnetic particles using MRI in phantom and swine chemoembolization models. IEEE Transactions on Biomedical Engineering, 69(8), 2616-2627. External link
Montagnon, E., Cerny, M., Hamilton, V., Derennes, T., Ilinca, A., Elforaici, M. E. A., Jabbour, G., Rafie, E., Wu, A., Perdigon Romero, F., Cadrin-Chênevert, A., Kadoury, S., Turcotte, S., & Tang, A. (2024). Radiomics analysis of baseline computed tomography to predict oncological outcomes in patients treated for resectable colorectal cancer liver metastasis. PLOS ONE, 19(9), 0307815 (17 pages). External link
Mansour, R., Vazquez Romaguera, L., Huet, C., Bentridi, A., Vu, K.-N., Billiard, J.-S., Gilbert, G., Tang, A., & Kadoury, S. (2022). Abdominal motion tracking with free-breathing XD-GRASP acquisitions using spatio-temporal geodesic trajectories. Medical and Biological Engineering and Computing, 60(2), 583-598. External link
Mansour, R., Vazquez Romaguera, L., Huet, C., Bentridi, A., Vu, K.N., Billiard, J. S., Gilbert, G., Tang, A., & Kadoury, S. (2022). Correction to: Abdominal motion tracking with freebreathing XDGRASP acquisitions using spatiotemporal geodesic trajectories. Medical and Biological Engineering and Computing, 60(4), 1223-1223. External link
Montagnon, E., Cerny, M., Cadrin-Chênevert, A., Hamilton, V., Derennes, T., Ilinca, A., Vandenbroucke-Menu, F., Turcotte, S., Kadoury, S., & Tang, A. (2020). Deep learning workflow in radiology: a primer. Insights into Imaging, 11(22), 15 pages. External link
Mansour, R., Thibodeau Antonacci, A., Bilodeau, L., Vazquez Romaguera, L., Cerny, M., Huet, C., Gilbert, G., Tang, A., & Kadoury, S. (2020). Impact of temporal resolution and motion correction for dynamic contrast-enhanced MRI of the liver using an accelerated golden-angle radial sequence. Physics in Medicine and Biology, 65(8), 16 pages. External link
Maaref, A., Romero, F. P., Montagnon, E., Cerny, M., Nguyen, B., Vandenbroucke, F., Soucy, G., Turcotte, S., Tang, A., & Kadoury, S. (2020). Predicting the Response to FOLFOX-Based Chemotherapy Regimen from Untreated Liver Metastases on Baseline CT: a Deep Neural Network Approach. Journal of Digital Imaging, 33(4), 937-945. External link
Michaud, F., Li, N., Plantefève, R., Nosrati, Z., Tremblay, C., Saatchi, K., Moran, G., Bigot, A., Häfeli, U. O., Kadoury, S., Tang, A., Perreault, P., Martel, S., & Soulez, G. (2019). Selective embolization with magnetized microbeads using magnetic resonance navigation in a controlled-flow liver model. Medical Physics, 46(2), 789-799. External link
Romero, F. P., Diler, A., Bisson-Gregoire, G., Turcotte, S., Lapointe, R., Vandenbroucke-Menu, F., Tang, A., & Kadoury, S. (2019, April). End-to-end discriminative deep network for liver lesion classification [Paper]. 16th IEEE International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy. External link
Romero, F. P., Tang, A., & Kadoury, S. (2019, April). Multi-level batch normalization in deep networks for invasive ductal carcinoma cell discrimination in histopathology images [Paper]. 16th IEEE International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy. External link
Saber, R., Henault, D., Messaoudi, N., Rebolledo, R., Montagnon, E., Soucy, G., Stagg, J., Tang, A., Turcotte, S., & Kadoury, S. (2023). Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases. Journal of Translational Medicine, 21(1), 16 pages. Available
Saber, R., Henault, D., Vorontsov, E., Montagnon, E., Tang, A., Turcotte, S., & Kadoury, S. (2022, February). Prediction of CD3 T-cell infiltration status in colorectal liver metastases: a radiomics-based imaging biomarker [Paper]. Medical Imaging 2022: Computer-Aided Diagnosis, San Diego, CA, USA (7 pages). External link
Svecic, A., Mansour, R., Tang, A., & Kadoury, S. (2021). Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks. PLOS ONE, 16(12), 22 pages. External link
Theriault-Lauzier, P., Cobin, D., Tastet, O., Langlais, E. L., Taji, B., Kang, G., Chong, A.-Y., So, D., Tang, A., Gichoya, J. W., Chandar, S., Déziel, P.-L., Hussin, J. G., Kadoury, S., & Avram, R. (2024). A responsible framework for applying artificial intelligence on medical images and signals at the point-of-care: the PACS-AI platform. Canadian Journal of Cardiology, 025 (39 pages). External link
Tous, C., Li, N., Dimov, I. P., Kadoury, S., Tang, A., Hafeli, U. O., Nosrati, Z., Saatchi, K., Moran, G., Couch, M. J., Martel, S., Lessard, S., & Soulez, G. (2021). Navigation of Microrobots by MRI: Impact of Gravitational, Friction and Thrust Forces on Steering Success. Annals of Biomedical Engineering, 49(12), 3724-3736. External link
Thibodeau-Antonacci, A., Petitclerc, L., Gilbert, G., Bilodeau, L., Olivie, D., Cerny, M., Castel, H., Turcotte, S., Huet, C., Perreault, P., Soulez, G., Chagnon, M., Kadoury, S., & Tang, A. (2019). Dynamic contrast-enhanced MRI to assess hepatocellular carcinoma response to Transarterial chemoembolization using LI-RADS criteria: A pilot study. Magnetic Resonance Imaging, 62, 78-86. External link
Vianna, P., Kulbay, M., Boustros, P., Calce, S.-I., Larocque-Rigney, C., Patry-Beaudoin, L., Luo, Y. H., Chaudary, M., Kadoury, S., Nguyen, B., Montagnon, E., Belilovsky, E., Wolf, G., Chasse, M., Tang, A., & Cloutier, G. (2023, September). Automated liver segmentation and steatosis grading using deep learning on B-mode ultrasound images [Paper]. IEEE International Ultrasonics Symposium (IUS 2023), Montreal, Qc, Canada (4 pages). External link
Vianna, P., Calce, S.-I., Boustros, P., Larocque-Rigney, C., Patry-Beaudoin, L., Luo, Y. H., Aslan, E., Marinos, J., Alamri, T. M., Vu, K.-N., Murphy-Lavallée, J., Billiard, J.-S., Montagnon, E., Li, H., Kadoury, S., Nguyen, B. N., Gauthier, S., Therien, B., Rish, I., ... Tang, A. (2023). Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis. Radiology, 309(1), e230659 (10 pages). External link
Vorontsov, E., Cerny, M., Régnier, P., Di Jorio, L., Pal, C. J., Lapointe, R., Vandenbroucke-Menu, F., Turcotte, S., Kadoury, S., & Tang, A. (2019). Deep learning for automated segmentation of liver lesions at cCT in patients with colorectal cancer liver metastases. Radiology: Artificial Intelligence, 1(2), 180014. External link
Vorontsov, E., Tang, A., Pal, C. J., & Kadoury, S. (2018, April). Liver lesion segmentation informed by joint liver segmentation [Paper]. 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018), Washington, D.C.. External link
Webster, R. J., Yaniv, Z. R., Gerard, M., Tang, A., Badoual, A., Michaud, F., Bigot, A., Soulez, G., & Kadoury, S. (2016, February). Visualization of hepatic arteries with 3D ultrasound during intra-arterial therapies [Paper]. Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling, San Diego, California. External link