Ahmad Maaref, Francisco Perdigon Romero, Emmanuel Montagnon, Milena Cerny, Bich Nguyen, Franck Vandenbroucke, Geneviève Soucy, Simon Turcotte, An Tang and Samuel Kadoury
Article (2020)
An external link is available for this itemDepartment: | Department of Computer Engineering and Software Engineering |
---|---|
PolyPublie URL: | https://publications.polymtl.ca/45298/ |
Journal Title: | Journal of Digital Imaging (vol. 33, no. 4) |
Publisher: | Springer |
DOI: | 10.1007/s10278-020-00332-2 |
Official URL: | https://doi.org/10.1007/s10278-020-00332-2 |
Date Deposited: | 18 Apr 2023 15:01 |
Last Modified: | 25 Sep 2024 16:33 |
Cite in APA 7: | Maaref, A., Romero, F. P., Montagnon, E., Cerny, M., Nguyen, B., Vandenbroucke, F., Soucy, G., Turcotte, S., Tang, A., & Kadoury, S. (2020). Predicting the Response to FOLFOX-Based Chemotherapy Regimen from Untreated Liver Metastases on Baseline CT: a Deep Neural Network Approach. Journal of Digital Imaging, 33(4), 937-945. https://doi.org/10.1007/s10278-020-00332-2 |
---|---|
Statistics
Dimensions