<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Cerny, Milena"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Réseau de collaboration
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Aller à : M | T | V
Nombre de documents: 6

M

Montagnon, E., Cerny, M., Hamilton, V., Derennes, T., Ilinca, A., Elforaici, M. E. A., Jabbour, G., Rafie, E., Wu, A., Perdigon Romero, F., Cadrin-Chênevert, A., Kadoury, S., Turcotte, S., & Tang, A. (2024). Radiomics analysis of baseline computed tomography to predict oncological outcomes in patients treated for resectable colorectal cancer liver metastasis. PLOS ONE, 19(9), 0307815 (17 pages). Lien externe

Montagnon, E., Cerny, M., Cadrin-Chênevert, A., Hamilton, V., Derennes, T., Ilinca, A., Vandenbroucke-Menu, F., Turcotte, S., Kadoury, S., & Tang, A. (2020). Deep learning workflow in radiology: a primer. Insights into Imaging, 11(22), 15 pages. Lien externe

Mansour, R., Thibodeau Antonacci, A., Bilodeau, L., Vazquez Romaguera, L., Cerny, M., Huet, C., Gilbert, G., Tang, A., & Kadoury, S. (2020). Impact of temporal resolution and motion correction for dynamic contrast-enhanced MRI of the liver using an accelerated golden-angle radial sequence. Physics in Medicine and Biology, 65(8), 16 pages. Lien externe

Maaref, A., Romero, F. P., Montagnon, E., Cerny, M., Nguyen, B., Vandenbroucke, F., Soucy, G., Turcotte, S., Tang, A., & Kadoury, S. (2020). Predicting the Response to FOLFOX-Based Chemotherapy Regimen from Untreated Liver Metastases on Baseline CT: a Deep Neural Network Approach. Journal of Digital Imaging, 33(4), 937-945. Lien externe

T

Thibodeau-Antonacci, A., Petitclerc, L., Gilbert, G., Bilodeau, L., Olivie, D., Cerny, M., Castel, H., Turcotte, S., Huet, C., Perreault, P., Soulez, G., Chagnon, M., Kadoury, S., & Tang, A. (2019). Dynamic contrast-enhanced MRI to assess hepatocellular carcinoma response to Transarterial chemoembolization using LI-RADS criteria: A pilot study. Magnetic Resonance Imaging, 62, 78-86. Lien externe

V

Vorontsov, E., Cerny, M., Régnier, P., Di Jorio, L., Pal, C. J., Lapointe, R., Vandenbroucke-Menu, F., Turcotte, S., Kadoury, S., & Tang, A. (2019). Deep learning for automated segmentation of liver lesions at cCT in patients with colorectal cancer liver metastases. Radiology: Artificial Intelligence, 1(2), 180014. Lien externe

Liste produite: Sat Jan 4 04:57:49 2025 EST.