Parikshat Sirpal, Rafat Damseh, Ke Peng, Dang Khoa Nguyen and Frédéric Lesage
Article (2021)
|
Published Version Terms of Use: Creative Commons Attribution . Download (7MB) |
Cite this document: | Sirpal, P., Damseh, R., Peng, K., Nguyen, D. K. & Lesage, F. (2021). Multimodal autoencoder predicts fNIRS resting state from EEG signals. Neuroinformatics, 2021. doi:10.1007/s12021-021-09538-3 |
---|
Abstract
In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimodal sequence-to-sequence autoencoder. The trained neural network predicts fNIRS signals from EEG, sans a priori, by hierarchically extracting deep features from EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are predictive of fNIRS signals with the gamma band inputs dominating fNIRS prediction as compared to other frequency envelopes. Seed based functional connectivity validates similar patterns between experimental fNIRS and our model’s fNIRS reconstructions. This is the first study that shows it is possible to predict brain hemodynamics (fNIRS) from encoded neural data (EEG) in the resting human epileptic brain based on power spectrum amplitude modulation of frequency oscillations in the context of specific hypotheses about how EEG frequency bands decode fNIRS signals.
Uncontrolled Keywords
EEG-fNIRS, Functional brain imaging, Deep neural networks, Epilepsy, Resting state, Functional connectivity, Neurovascular coupling
![]() |
|
Subjects: |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 9000 Sciences de la santé > 9000 Sciences de la santé |
---|---|
Department: | Département de génie électrique |
Research Center: | Autre |
Funders: | CRSNG/NSERC, IRSC/CIHR |
Grant number: | 239876, 87183 |
Date Deposited: | 24 Mar 2022 11:40 |
Last Modified: | 25 Mar 2022 01:20 |
PolyPublie URL: | https://publications.polymtl.ca/9262/ |
![]() |
|
Journal Title: | Neuroinformatics (vol. 2021) |
---|---|
Publisher: | Springer Nature |
Official URL: | https://doi.org/10.1007/s12021-021-09538-3 |
Statistics
Total downloads
Downloads per month in the last year
Origin of downloads
Dimensions