Thèse de doctorat (2023)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Conditions d'utilisation: Tous droits réservés Télécharger (9MB) |
Résumé
RÉSUMÉ Les Systèmes Multi-Robots (SMR) permettent d’effectuer des missions de manière efficace et robuste du fait de leur redondance. Cependant, les robots étant des véhicules autonomes, ils nécessitent un positionnement précis en temps réel. Les techniques de localisation qui utilisent des Mesures Relatives (MR) entre les robots, pouvant être des distances ou des angles, sont particulièrement adaptées puisqu’elles peuvent bénéficier d’algorithmes coopératifs au sein du SMR afin d’améliorer la précision pour l’ensemble des robots. Dans cette thèse, nous proposons des stratégies pour améliorer la localisabilité des SMR, qui est fonction de deux facteurs. Premièrement, la géométrie du SMR influence fondamentalement la qualité de son positionnement pour des MR bruitées. Deuxièmement, les erreurs de mesures dépendent fortement de la technologie utilisée. Dans nos expériences, nous nous focalisons sur la technologie UWB (Ultra-Wide Band), qui est populaire pour le positionnement des robots en environnement intérieur en raison de son coût modéré et sa haute précision. Par conséquent, une partie de notre travail est consacrée à la correction des erreurs de mesure UWB afin de fournir un système de navigation opérationnel. En particulier, nous proposons une méthode de calibration des biais systématiques et un algorithme d’atténuation des trajets multiples pour les mesures de distance en milieu intérieur. Ensuite, nous proposons des Fonctions de Coût de Localisabilité (FCL) pour caractériser la géométrie du SMR, et sa capacité à se localiser. Pour cela, nous utilisons la Borne Inférieure de Cramér-Rao (BICR) en vue de quantifier les incertitudes de positionnement. Par la suite, nous fournissons des schémas d’optimisation décentralisés pour les FCL sous l’hypothèse de MR gaussiennes ou log-normales. En effet, puisque le SMR peut se déplacer, certains de ses robots peuvent être déployés afin de minimiser la FCL. Cependant, l’optimisation de la localisabilité doit être décentralisée pour être adaptée à des SMRs à grande échelle. Nous proposons également des extensions des FCL à des scénarios où les robots embarquent plusieurs capteurs, où les mesures se dégradent avec la distance, ou encore où des informations préalables sur la localisation des robots sont disponibles, permettant d’utiliser la BICR bayésienne. Ce dernier résultat est appliqué au placement d’ancres statiques connaissant la distribution statistique des MR et au maintien de la localisabilité des robots qui se localisent par filtrage de Kalman. Les contributions théoriques de notre travail ont été validées à la fois par des simulations à grande échelle et des expériences utilisant des SMR terrestres. Ce manuscrit est rédigé par publication, il est constitué de quatre articles évalués par des pairs et d’un chapitre supplémentaire.
Abstract
ABSTRACT Multi-Robot Systems (MRS) are increasingly interesting to perform tasks eÿciently and robustly. However, since the robots are autonomous vehicles, they require accurate real-time positioning. Localization techniques that use relative measurements (RMs), i.e., distances or angles, between the robots are particularly suitable because they can take advantage of cooperative schemes within the MRS in order to enhance the precision of its positioning. In this thesis, we propose strategies to improve the localizability of the SMR, which is a function of two factors. First, the geometry of the MRS fundamentally influences the quality of its positioning under noisy RMs. Second, the measurement errors are strongly influenced by the technology chosen to gather the RMs. In our experiments, we focus on the Ultra-Wide Band (UWB) technology, which is popular for indoor robot positioning because of its mod-erate cost and high accuracy. Therefore, one part of our work is dedicated to correcting the UWB measurement errors in order to provide an operable navigation system. In particular, we propose a calibration method for systematic biases and a multi-path mitigation algorithm for indoor distance measurements. Then, we propose Localizability Cost Functions (LCF) to characterize the MRS’s geometry, using the Cramér-Rao Lower Bound (CRLB) as a proxy to quantify the positioning uncertainties. Subsequently, we provide decentralized optimization schemes for the LCF under an assumption of Gaussian or Log-Normal RMs. Indeed, since the MRS can move, some of its robots can be deployed in order to decrease the LCF. However, the optimization of the localizability must be decentralized for large-scale MRS. We also propose extensions of LCFs to scenarios where robots carry multiple sensors, where the RMs deteriorate with distance, and finally, where prior information on the robots’ localization is available, allowing the use of the Bayesian CRLB. The latter result is applied to static anchor placement knowing the statistical distribution of the MRS and localizability maintenance of robots using Kalman filtering. The theoretical contributions of our work have been validated both through large-scale simulations and experiments using ground MRS. This manuscript is written by publication, it contains four peer-reviewed articles and an additional chapter.
Département: | Département de génie électrique |
---|---|
Programme: | Génie électrique |
Directeurs ou directrices: | Jérôme Le Ny, Éric Chaumette et Gaël Pagès |
URL de PolyPublie: | https://publications.polymtl.ca/53412/ |
Université/École: | Polytechnique Montréal |
Date du dépôt: | 24 juil. 2023 09:26 |
Dernière modification: | 25 sept. 2024 20:54 |
Citer en APA 7: | Cano, J. (2023). Localizability Optimization for Multi Robot Systems and Applications to Ultra-Wide Band Positioning [Thèse de doctorat, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/53412/ |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements