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RÉSUMÉ

Les Systèmes Multi-Robots (SMR) permettent d’effectuer des missions de manière efficace et
robuste du fait de leur redondance. Cependant, les robots étant des véhicules autonomes, ils
nécessitent un positionnement précis en temps réel. Les techniques de localisation qui utilisent
des Mesures Relatives (MR) entre les robots, pouvant être des distances ou des angles, sont
particulièrement adaptées puisqu’elles peuvent bénéficier d’algorithmes coopératifs au sein
du SMR afin d’améliorer la précision pour l’ensemble des robots.

Dans cette thèse, nous proposons des stratégies pour améliorer la localisabilité des SMR, qui
est fonction de deux facteurs. Premièrement, la géométrie du SMR influence fondamentale-
ment la qualité de son positionnement pour des MR bruitées. Deuxièmement, les erreurs de
mesures dépendent fortement de la technologie utilisée. Dans nos expériences, nous nous fo-
calisons sur la technologie UWB (Ultra-Wide Band), qui est populaire pour le positionnement
des robots en environnement intérieur en raison de son coût modéré et sa haute précision.
Par conséquent, une partie de notre travail est consacrée à la correction des erreurs de mesure
UWB afin de fournir un système de navigation opérationnel. En particulier, nous proposons
une méthode de calibration des biais systématiques et un algorithme d’atténuation des trajets
multiples pour les mesures de distance en milieu intérieur.

Ensuite, nous proposons des Fonctions de Coût de Localisabilité (FCL) pour caractériser la
géométrie du SMR, et sa capacité à se localiser. Pour cela, nous utilisons la Borne Inférieure
de Cramér-Rao (BICR) en vue de quantifier les incertitudes de positionnement. Par la suite,
nous fournissons des schémas d’optimisation décentralisés pour les FCL sous l’hypothèse de
MR gaussiennes ou log-normales. En effet, puisque le SMR peut se déplacer, certains de
ses robots peuvent être déployés afin de minimiser la FCL. Cependant, l’optimisation de la
localisabilité doit être décentralisée pour être adaptée à des SMRs à grande échelle.

Nous proposons également des extensions des FCL à des scénarios où les robots embarquent
plusieurs capteurs, où les mesures se dégradent avec la distance, ou encore où des informa-
tions préalables sur la localisation des robots sont disponibles, permettant d’utiliser la BICR
bayésienne. Ce dernier résultat est appliqué au placement d’ancres statiques connaissant la
distribution statistique des MR et au maintien de la localisabilité des robots qui se localisent
par filtrage de Kalman. Les contributions théoriques de notre travail ont été validées à la
fois par des simulations à grande échelle et des expériences utilisant des SMR terrestres. Ce
manuscrit est rédigé par publication, il est constitué de quatre articles évalués par des pairs
et d’un chapitre supplémentaire.



vii

ABSTRACT

Multi-Robot Systems (MRS) are increasingly interesting to perform tasks efficiently and
robustly. However, since the robots are autonomous vehicles, they require accurate real-time
positioning. Localization techniques that use relative measurements (RMs), i.e., distances
or angles, between the robots are particularly suitable because they can take advantage of
cooperative schemes within the MRS in order to enhance the precision of its positioning.

In this thesis, we propose strategies to improve the localizability of the SMR, which is a
function of two factors. First, the geometry of the MRS fundamentally influences the quality
of its positioning under noisy RMs. Second, the measurement errors are strongly influenced
by the technology chosen to gather the RMs. In our experiments, we focus on the Ultra-Wide
Band (UWB) technology, which is popular for indoor robot positioning because of its mod-
erate cost and high accuracy. Therefore, one part of our work is dedicated to correcting the
UWB measurement errors in order to provide an operable navigation system. In particular,
we propose a calibration method for systematic biases and a multi-path mitigation algorithm
for indoor distance measurements.

Then, we propose Localizability Cost Functions (LCF) to characterize the MRS’s geometry,
using the Cramér-Rao Lower Bound (CRLB) as a proxy to quantify the positioning uncer-
tainties. Subsequently, we provide decentralized optimization schemes for the LCF under
an assumption of Gaussian or Log-Normal RMs. Indeed, since the MRS can move, some of
its robots can be deployed in order to decrease the LCF. However, the optimization of the
localizability must be decentralized for large-scale MRS.

We also propose extensions of LCFs to scenarios where robots carry multiple sensors, where
the RMs deteriorate with distance, and finally, where prior information on the robots’ local-
ization is available, allowing the use of the Bayesian CRLB. The latter result is applied to
static anchor placement knowing the statistical distribution of the MRS and localizability
maintenance of robots using Kalman filtering.

The theoretical contributions of our work have been validated both through large-scale sim-
ulations and experiments using ground MRS. This manuscript is written by publication, it
contains four peer-reviewed articles and an additional chapter.
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CHAPTER 1 INTRODUCTION

“Self-education is, I firmly believe, the only kind of education there is.”

– Isaac Asimov (1920-1992)

Multi Robot Systems (MRS) become increasingly popular, for their numerous applications
and attractive features. Indeed, since a robot is an automated device that is expected to
perform tasks safely, quickly and precisely, the redundancy brought by using several robots
is a common solution to enforce these requirements. Additional constraints specific to their
embedded character such as energy and computational limitation should also be mitigated
by an MRS design. For instance, multiple robots can perform a given task quicker than a
single one and thus suffer less from charging time.

Figure 1.1: Illustration of an MRS : Drone100 Light Show, performed by Ars Electronica
Futurelab in 2015. © Creative Commons

In order to be attractive, especially for industrial applications, mobile robots have to remain
affordable and replaceable. Thus the mass production of a simple model is often preferred
to a single or a small number of more sophisticated robots. Therefore, MRS are increasingly
used in various domains : civil engineering, agriculture, military, rescue services, etc. To give
a more entertaining example, an increase of multiple Unmanned Aerial Vehicle (UAV) air
shows has occurred these recent years, as illustrated in Figure 1.1.

Regardless of their assigned tasks, robots must have access to a real-time and reliable posi-
tioning system to operate. The position estimates should be precise and refreshed sufficiently
often to ensure a safe position control. Moreover, the localization algorithm should take into
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account all available information in the MRS, e.g., take into consideration the topology of
the network formed by the robots, which could vary over time. In this thesis, we focus on the
localization problem and in particular the ways to enhance the position estimates’ precision.
The following sections of this chapter specify the scope of our work and give a brief overview
of the localization problem, in particular when an MRS is involved.

1.1 Localization Methods

1.1.1 General Principles

To determine the position of an object, measurements that are an explicit function of its po-
sition are required. For instance, several angle measurements between the object and known
reference points can be used to build a position estimate. This technique, mastered by nav-
igators since the Medieval Era [O’Connor and Robertson, 1999], is known as triangulation,
see Figure 1.2. In the literature, observations that are extrinsic to an object and that (non-
linearly) depend on its position are called Position Fixing (PF) measurements [Groves, 2013].
Then, the PF data can be used by an estimator, e.g., nonlinear Least Squares (LS) [Kay,
1993, Section 8.9], in order to estimate the position.

•

× ×
Reference point 1 Reference point 2

Unknown position

θ1 θ2

Figure 1.2: Illustration of the triangulation principle

If the kinematics of the object are known, Dead Reckoning (DR) measurements can be used,
which involve the time derivatives of the positions. Typical DR measurements can be pro-
vided by accelerometers (acceleration), odometers (velocity), or optical flow sensors (velocity)
and require numerical integration in order to retrieve the position. For this reason, DR-based
navigation suffers from error drifts [Groves, 2013, Chap. 4], and this fact is exacerbated when
the initial states are not perfectly known.

Fused with PF, the information provided by DR sensors can be used to improve the quality
of position estimates. This uses a state prediction based on the kinematics and the DR
measurements, which allows to build a posterior after incorporating a PF observation. This
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Model Update
Measurements

DR

PF

Prediction Estimate

Figure 1.3: General structure of an estimator model fusing DR and PF measurements

strategy, known as sensor fusion, is widely used in the navigation domain, where comple-
mentary measurements are used to produce more reliable estimates [Raol, 2016]. Here, since
a kinematic model of the vehicle is assumed, the position estimator has access to prior in-
formation, i.e., a prediction, when the measurements are acquired. The estimate can then
be constructed recursively using, for example, Kalman filtering techniques [Kay, 1993, Chap.
13]. However, regardless of the availability of prior information, position estimates remain
strongly influenced by the quality of the PF, especially if systematic biases occur in these
measurements.

1.1.2 Cooperative Relative-Measurement Based Localization

In this thesis, since we aim to enhance the localization precision for an MRS, we focus our
study on the Relative Measurements (RMs) between the robots. These observations can be
angles or distances between the robots. They are considered as PF measurements since each
robot captures extrinsic information from its point of view. This kind of measurement is
particularly useful where the Global Navigation Satellite System (GNSS) signals, such as the
GPS, are unavailable. A paradigmatic use case of RMs is the navigation inside a building
while the GNSS signal is strongly deteriorated and has insufficient resolution to perform
position control. However, in order to solve the localization problem in an absolute frame
for an MRS aided with RMs , some assumptions have to be made.

First, the connectivity of the graph formed by the RMs (edges) and the sensors (vertices)
must be strong enough to determine unambiguously the locations of the robots. In addition,
the positions of a sufficient number of sensors must be known in a global reference frame in
order to solve the localization problem in that frame. This number depends on the dimension
n of the localization problem in Rn (e.g., for localizing a UAV in n = 3 dimensions, or for
Unmanned Ground Vehicle (UGV) n = 2 on a perfectly flat ground) and the nature of the
RMs. In the literature we refer to these known position sensors as anchors, while the sensors
whose position is unknown and which are carried by the robots are called tags. An example
of such a setup is shown in Figure 1.4, which presents both fixed and mobile anchors carried
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by robots. As shown in the figure, the mobile anchors can be located accurately enough by
GNSS, for example. Indeed, Real-Time Kinematics (RTK) positioning systems, which allow
sub-meter accuracy, could be used by the mobile anchors, while the other robot tags would
not be able to receive this signal and would remain located by RMs.

External source 
of localization

Anchors

Tags

Unknown positions

Relative
measurements

Figure 1.4: An example of RM-based localization setup

Second, the geometric shape formed by the position of the sensors, the RMs, and the previous
graph must be non-degenerate to provide a unique solution to the localization problem.
Typically, any position estimator based on distance measurements would do poorly in locating
a tag that is aligned with all of its neighbors.

Third, the design of the position estimator should take into account that the graph formed
by the RMs is not complete in general i.e., some tags/anchors are not neighbors. As an
illustration, the two UAVs shown at the bottom of Figure 1.4 are not connected by RMs.
Thus, decentralized positioning algorithms that take into account the sparsity of the graph
are required to solve the problem and render the system robust to possible sensor failures.

1.1.3 The Case of Radio-Frequency Measurements

Relative measurement can be provided by different technologies such as visual [Tron et al.,
2016], acoustic [Papalia and Leonard, 2020] or Radio Frequency (RF) measurements. Our
work focuses on the latter because of its relative robustness to propagation distortions and
the enabling of information exchange during RMs. For example, the communication chan-
nel can be used as an opportunity signal, considering that knowing a power fading model,
the Received Signal Strength (RSS) measurement can be seen as a distance observation.
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However, power fading-based techniques require extensive calibration to estimate the specific
parameters of the sensors and the environment. Typically, fingerprinting techniques are pre-
ferred to determine the accuracy [Xu and Chou, 2017,Vo and De, 2016], but they also require
prior calibration to acquire the RSS in the workspace before navigation. Nevertheless, their
accuracy may be insufficient for some applications, especially for indoor UAV navigation.

Alternatively, the timestamps of the transmission and reception of the signal between two
RF transceivers can be measured instead of the RSS. This technique is more robust to
distortions since it uses time correlation between the received signal and a known sequence
to estimate the Time of Arrival (ToA), i.e., the reception time of a given signal. In fact, time
correlation is known to be a robust parameter estimation technique under noisy observation
[Kay, 1993]. For example, we can cite the Gold Codes used in GNSS, which are used as
correlation functions to estimate the ToA. [Groves, 2013, Paulin, 2017]. Here we focus on
these timestamp-based techniques, which can provide both distance and angle measurements.

For our experiments, we use Ultra-Wide Band (UWB) transceivers as sensors, which are
popular in robotics and provide sufficient resolution for indoor localization [Etzlinger and
Wymeersch, 2018, Prorok, 2013]. The UWB standard designates signals with an absolute
bandwidth of ∆f = 500 MHz or a fractional bandwidth greater than fB = 1/5, according to
the US Federal Communication Commission [Sahinoglu et al., 2008, p. 20]. The definition of
these quantities is ∆f := fmax−fmin and δf := ∆f/fc, where fmax is the maximum frequency
of the signal with a tolerance of −3 dB (or fmin for the minimum) and fc := (fmax +fmin)/2 is
the center frequency. This large bandwidth allows a sharp time resolution to estimate signal
reception times, which is suitable for precise distance or angle measurements (see (2.6)).

As an example, consider two transceivers i and j exchanging messages by UWB. If we denote
Ti the transmission time of the message by i and Rj the reception time by j, then τij = Rj−Ti

defines the signal Time Of Flight (ToF). If we assume the signal travels at the speed of light
c ≈ 3 × 108 m/s, then the distance dij between the two transceivers can be calculated as
follows

dij = cτij. (1.1)

The equation (1.1) implies that an error of 30 cm in the distance measurement corresponds to
a nanosecond error in the time domain. This fact motivates the high time resolution design
of ToF based RF sensors and the use of UWB technology. In addition, UWB transceivers are
known for their low power consumption, moderate cost, and relative robustness to propaga-
tion interference, which explains their popularity for robotic applications [Sahinoglu et al.,
2008,Prorok, 2013].
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1.2 Localizability of Cooperative Mobile Robot Systems

The main purpose of this thesis is to optimize the localizability of the MRS, i.e., their
ability to be localized. To do so, we must first analyze the sources of error of the positioning
system. In this section, we first discuss the measurement errors induced by a pair of RF
sensors, which can significantly degrade the positioning in real experiments. Second, we
briefly introduce the dependence between the network topology and the positioning errors,
which affects all types of RMs. The mitigation of such phenomena is the main contribution
of this thesis.

1.2.1 Sources of ToF Measurement Errors

For ToF-based relative measurement protocols, the first source of error is undoubtedly incor-
rect timestamps. One of the main factors exacerbating timestamp errors is the clock drift
phenomenon: for a given pair of transceivers {i, j}, the crystal driving the clock of i would os-
cillate at a different period from that of j. In fact, the crystals are subject to thermodynamic
fluctuations that produce significant frequency variations [Frerking, 1978].

Since the RF signals propagate at the speed of light c, this phenomenon can induce signifi-
cant ranging errors. Therefore, the clock drift must be efficiently compensated or estimated
over time to ensure an acceptable accuracy for MRS navigation [Prorok, 2013,Etzlinger and
Wymeersch, 2018]. Then, modeling the clock drift for ToF-based localization is the very first
step to achieve an appropriate positioning accuracy.

Furthermore, the process that estimates ToA, called Leading Edge Detector (LDE), is highly
sensitive to Received Power (RxP) for UWB sensors. In particular, RxP variation leads to
significant systematic biases (namely E{τ̂} ̸= τ) in ToF estimates [Decawave, 2018]. These
biases result from hardware imperfections (amplifiers, antenna gains, inaccurate phase loop)
and must be compensated to improve the quality of the RMs.

When the implicit assumption of straight-line signal propagation is not valid, the equation
(1.1) no longer holds. First, this can occur when an obstacle between two transceivers deflects
the radio signal. The phenomenon is known as Non Line of Sight (NLoS) propagation in both
GNSS [Groves, 2013] and UWB [Sahinoglu et al., 2008] literature. In Figure 1.5, we have
illustrated the NLoS phenomenon with the blue line. Here, the fixed beacon is hidden from
the view of the UGV, which can cause severe distortion of the signal [Yu et al., 2019].

Second, when two transceivers are in Line of Sight (LoS), if a radio-reflecting surface (such
as the ground or a wall) is near one of them, the ToA estimator, known as LDE, may
detect reflected signals from the surface instead of the received straight-path signal. This
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Multi Path
 

Non Line 
   of Sight

Figure 1.5: Illustration of MP and NLOS phenomena

phenomenon, called Multi Path (MP) propagation in the RF literature, also introduces sig-
nificant errors even in the absence of obstacles [Gururaj et al., 2017,Maceraudi et al., 2016].
In Figure 1.5 two MP paths starting from the UAV are shown in red while the staight-path
signal is plotted in green. Both NLoS and MP outliers need to be handled in the navigation
filter design by detecting or mitigating them to avoid experimental problems.

1.2.2 Geometric Sources of Errors

Even with the aforementioned calibrations, clock synchronization, and perfect LoS propaga-
tion, the UWB measurements still have unmodeled error terms. These residual uncertainties
can be amplified by poor geometry of the MRS, a phenomenon known in the GNSS literature
and quantified with the Dilution of Precision (DoP) [Groves, 2013, Section 9.4].

:)
(a) Fair geometry (low DoP)

???

(b) Poor geometry (high DoP)

Figure 1.6: Illustration of the DoP concept
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To give a concrete example, consider three anchors performing noisy distance measurements
with a tag carried by a UGV, as shown in Figure 1.6. The light green annuli correspond to the
measurement uncertainties and the intersection of three of these annuli corresponds to the
positioning uncertainty. We can clearly see that the isosceles triangle geometry (Figure 1.6a)
gives a better positioning result (in blue) than a quasi-aligned geometry (Figure 1.6b). Thus,
this very simple example highlights the dependence between MRS topology and localizability,
which remains true for all kinds of noisy RMs.

As Figure 1.4 illustrates, all tags and possibly some anchors are carried by robots that can
move and then modify the geometry of the MRS. Thus, through motion planning, it is
possible to improve the localizability of some tags by changing the geometry of the network.
To do this, we need to model the localization errors, providing the probabilistic distributions
of the RMs. Finally, this modeling would allow the formulation of an optimization problem
aimed at improving the localizability of the tags.

To use MRS experimentally, the placement problem must be solved in real time, in a decen-
tralized manner, and using noisy measurements. This last point is an additional motivation
to track the errors presented in Section 1.2.1, which could lead to erratic behavior. Indeed,
since the motion control law depends in practice on the position estimates, we must verify
the feasibility of such deployment in practice. The next chapter presents both the theoretical
building blocks for solving this motion planing problem and the practical methods to perform
prior error elimination on the RMs. Then, Chapter 3 presents the outline of the manuscript
and its contributions.
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CHAPTER 2 LITERATURE REVIEW

“Science sans conscience n’est que ruine de l’âme.”

– François Rabelais (c. 1483-1553)

In this chapter, we provide a brief literature review of the concepts used in this thesis. Since
the manuscript is article-based (see Chapter 3), we focus on a didactic approach to explain
the different concepts leveraged in our work, while a more specific discussion of the state of
the art is presented at the beginning of each article.

First, we introduce some elementary concepts of the RF timestamp-based protocols that
RMs provide. We then discuss the mitigation strategies used in the literature to correct
for the measurement errors mentioned in Chapter 1. After that, we define the concept of
DoP and introduce covariance bounds as performance indicators of the estimators’ precision.
Finally, we briefly introduce some notions of MRS formation control related to localizability
optimization.

2.1 RF Timestamp-Based Relative Measurements

2.1.1 Measurement Protocols

As seen in (1.1), ToF estimation is equivalent to observing the distances between MRS agents,
assuming they are in LoS and without MP phenomena. In order to estimate the ToF τab

between two beacons a and b, protocols that require the transmission of multiple messages
must be designed [Sahinoglu et al., 2008]. We classify these protocols into two categories
depending on the configuration of the tags, i.e., whether they are active transmitters or
simply passive receivers.

Active Ranging Protocols (TWR)

To compensate for the clock drift phenomenon introduced in Chapter 1, one idea is to elim-
inate this quantity by time differences, assuming that the drift remains constant during
propagation [Sahinoglu et al., 2008, Section 6.2]. These protocols are referred to as Two-Way
Ranging (TWR) in the literature [Prorok, 2013], since both the tags and the anchors are
active in the transmission of the messages.
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Specifically, let us consider the agent (tag or anchor) a that transmits the message m and
the associated timestamp T a

m that is evaluated by the clock of a. Correspondingly, another
agent b receives m at Rb

m, timestamped by its own clock. The ToF is then present in the
following difference

Rb
m − T a

m = τab + δab
m (2.1)

where δab
m := T b

m−T a
m
∼= Rb

m−Ra
m is the (assumed constant) clock offset during the transmis-

sion of m. Then it is possible to retrieve τab by performing multiple time differences similar
to (2.1), using multiple messages (constituting a transaction) to eliminate the clock offset.

T a
1

Rb
1

T b
2

Ra
2

Agent a Agent b

τ̃ab = (Ra
2−T a

1 )−(T b
1 −Rb

1)
2

(a) SSTWR [Sahinoglu and Gezici, 2006, 6.2.1]

T a
1

Rb
1

T b
2

Ra
2

T a
3

Rb
3

Agent a Agent b

τ̃ab = (Ra
2−T a

1 )−(T a
3 −Ra

2)+(Rb
3−T b

2 )−(T b
1 −Rb

1)
4

(b) DSTWR [Neirynck et al., 2016]

Figure 2.1: Examples of TWR protocols

With two messages m ∈ {1, 2}, it is possible to perform such compensation [Tewes et al.,
2017] as shown in figure 2.1a. This type of protocol is called a Single-Sided Two-Way Ranging
(SSTWR). [Sahinoglu and Gezici, 2006, Section 6.2.1]. In fact, calculating the difference and
expressing it in the time base of a yields

Rb
1 − T a

1 +Ra
2 − T b

2 = Ra
1 + δab

1 − T a
1 +Ra

2 − (T a
2 + δab

2 ) = 2τab + δab
2 − δab

1 , (2.2)

assuming that τab is the same throughout the transaction, i.e., that the motion between
the two agents remains negligible. Another common approximation is to state that the
clock offset remains constant over messages in a given transaction [Sahinoglu and Gezici,
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2006, Section 6.2.1], i.e. δab
2 ≈ δab

1 then (2.2) becomes

Rb
1 − T a

1 +Ra
2 − T b

2 ≈ 2τab, (2.3)

which allows to observe the ToF τab and thus to measure the distance dab. Once the ToF is
measured by such a technique, it can be provided as input to a position estimator such as
an Extended Kalman Filter (EKF) [Chui and Chen, 1999, Chap. 8], as implemented in [Mai
et al., 2018,Dewberry and Einhorn, 2016] for example.

However, the precision of τab may be insufficient due to the variation of clock offset during a
transaction. This problem can be solved by using multiple messages to average the noisy ToF
observation. Typically, the Double-Sided Two-Way Ranging (DSTWR) protocols use more
timestamp measurements [Kim, 2009] in the TWR protocol. To illustrate these techniques,
we show the timeline of a DSTWR protocol consisting of three messages in Figure 2.1b
presented in [Neirynck et al., 2016]. Alternatively, second-order offset models, i.e., including
the clock skew δ̇ab, can also be used to improve its compensation in the ToF computation
[Jiang and Leung, 2007,Neirynck et al., 2016]. These techniques are strongly inspired by the
One-Way Ranging (OWR) literature presented in the next paragraph.

Passive Ranging Protocols (OWR)

In order to perform OWR, i.e., without any communication from the tags, it is necessary to
synchronize the anchors [Prorok, 2013,Etzlinger and Wymeersch, 2018] to properly estimate
the ToF or, more generally, functions of it. The ToA observable differs from TWR in that
it now includes clock offset as an additional state variable. This measurement is called
pseudo-range and is defined as follows

ρab := c(δab + τab), (2.4)

and clock offset estimation implies that at least n+ 2 measurements are needed to localize a
tag in Rn [Etzlinger and Wymeersch, 2018,Sahinoglu and Gezici, 2006].

This OWR protocol is used in the GNSS systems, which use an extended model based
on (2.4) that adds relativistic, ionospheric, and tropospheric corrections specific to satellite
communications [Groves, 2013]. It has also been adapted for indoor localization, in particular
using UWB technology, [Alavi and Pahlavan, 2006, Li and Cao, 2014] and can be used for
mobile robot navigation [Cano et al., 2019].

Alternatively, localization based on Time Difference of Arrival (TDoA) is also popular in
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Figure 2.2: Localization with passive ranging protocols

robot navigation [Ledergerber et al., 2015,Angelis et al., 2017,Tiemann et al., 2019, Prorok
et al., 2012b]. This protocol leverages the time difference of arrival defined as follows

∆abc = ρab − ρac = c
(
τab − τac − δab

MB + δac
MC

)
, (2.5)

where ρab and ρac are pseudoranges computed by tag a thanks to two messages MB and MC

sent by anchors b and c. Note that if the anchors are synchronous, their offset with respect
to the tag is the same, namely δab

MB = δac
MB. On the other hand, since this offset varies over

time due to clock drift, we generally have δab
MC ̸= δab

MB, because MB and MC are sent at
different times. This motivates tracking the clock offset over time, i.e., assuming a clock drift
model as in [Giorgi and Narduzzi, 2011]. Both the ToA and TDoA localization principles
are illustrated in Figure 2.2, where again both the position and the drift can be estimated
thanks to an EKF as performed in [Wann et al., 2006]. The passive (or eavesdropping) tags
are shown in red, the anchors in green, the Lines of Position (LoP) in purple. In the absence
of noise and when the system is perfectly synchronized, the intersection of the LoP gives the
position of the tags.

Bearing Measurements

In order to obtain Angle of Arrival (AoA) measurements, several receptors on the same tag
are required to form a sensor array [Naidu, 2009]. Let us give a simple example adapted
from [Sahinoglu et al., 2008, 4.1.2]. Consider a two-dimensional setup with two antennas r1

and r2 on a given tag receptor u that has to compute the AoA θa of a signal coming from
the anchor a. This signal is received by r1 at Rr1 (or Rr2 for r2). In that case, the difference
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between the two ToA depends on the bearing, namely, we can express the timestamps and
their difference as follows [Sahinoglu et al., 2008, p. 68]

R
u
r1 ≈ τab + c−1l sin θa + δab,

Ru
r2 = τab + δab,

⇒ Ru
r1 −R

u
r2 ≈ c−1l sin θa (2.6)

assuming that dab/l >> 1, where l is the distance between the antennas. The geometry of
the problem is shown in figure 2.3.

. . . . . .θa x⃗•

•

•

l •P

r1

r2

Tag u

Anchor a

r1P = l sin(θa)

Figure 2.3: Illustration of the AoA measurement principle

This type of measurement is widely used in UWB positioning systems, for example in [Dotlic
et al., 2017] and in the technical report [NASA, 2010]. It can also be used as a complement
to ranging techniques such as the TDoA, as presented in [Wann et al., 2006], which provides
an improvement in positioning accuracy. We emphasize that since the clock offset is assumed
constant in (2.6). Thus, the AoA protocols might also suffer from synchronization problems.
Therefore, clock offset must be tracked over time to make accurate measurements [Xu et al.,
2008].

2.1.2 Mitigation of UWB Timestamp-based RM Errors

Overall, the methods presented above depend on the ToA accuracy provided by an LDE
estimator [Sahinoglu and Gezici, 2006]. As the technical report [Decawave, 2018] suggests,
two major sources of error can be identified: synchronization and signal-related errors that
degrade LDE performance.

First, the synchronization issue can be addressed by using techniques such as the Precision



14

Time Protocol (PTP) [Cho et al., 2009]. Then, after observing the clock offset, it can be
tracked over time using, for example, a Kalman filter based on a single integrator clock model
as in [Giorgi and Narduzzi, 2011]. This kind of implementation has been successfully tested
for ToA-based UGV navigation in our work [Cano et al., 2019], where we provided a synchro-
nization method for fixed anchors. This type of tracking has also been validated for UAV
localization, for instance in [Hamer and D’Andrea, 2018], which used a more complex clock
model to improve precision. Note that a more comprehensive discussion of synchronization
and clock modeling can be found in our master’s thesis [Cano et al., 2019, Chap. 3].

Second, the ToA estimate provided by the LDE can suffer from systematic biases even under
perfect LoS and synchronicity conditions [Decawave, 2018, p.10]. This phenomenon is mainly
due to hardware imperfections such as asymmetric radiation patterns of transceivers’ anten-
nas or circuitry that causes delays in ToA estimates [González et al., 2009,Savic et al., 2016].
For the popular DW1000 module manufactured by Qorvo © [Qorvo, 2022], the amplitude of
this bias is significant. It can be up to 20 cm, where the expected accuracy of the measure-
ment is 10 cm. As emphasized in the first chapter of this manuscript, PF measurements
should not be biased to ensure accurate positioning. Therefore, this bias term must also be
tracked in real time to improve the localizability of the MRS.

Finally, as highlighted in Section 1.2.1, in the case of NLoS or MP propagation scenarii, the
data provided by the LDE may be severely degraded. In this case, a common approach is
to remove the contaminated measurement by characterizing the outlier. For this purpose,
classification techniques based on the Chanel Impluse Response (CIR) using machine learning
are popular to improve the localization [Marano et al., 2010,Bregar and Mohorčič, 2018,Jiang
et al., 2020].

Alternatively, instead of simply rejecting the contaminated measurements, one can mitigate
their effects using weights that depend on residuals (e.g., for LS) or innovation (e.g., for
EKF). For example, the class of M estimators described in [Zoubir et al., 2018] uses weights
such as Huber weights [Huber, 1964] to penalize contaminated data. This technique has been
used for GNSS in a recent work of our group [Ding et al., 2022] and could then be efficient for
indoor navigation systems based on UWB. In addition, sensor fusion can be used to reduce
the impact of such outliers. For example, in [Li et al., 2018] a tight coupling of pedestrian DR
measurements taken by an Inertial Measurement Unit (IMU) is successfully used to reduce
UWB NLoS outliers effects by predicting the motion. However, since the DR measurements
introduce drift on the position, this assumes to provide a sufficient quantity of LoS UWB
measurements to ensure positioning convergence. To do so, it is necessary to perform outlier
filtering on the RF measurements to retrieve the LoS information.
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2.2 Modeling the MRS’ Geometry Impact on Positioning

As pointed out in section 1.2.2, a poor topology of the MRS agents can affect the localization
of tags even with a reasonable noise level. This section gives some basic results to characterize
the precision of the position estimator given a certain measurement distribution. These
results will then be used to construct cost functions for the deployment of MRS.

2.2.1 Position Estimators

Let us first give a brief overview of the various existing positioning algorithms before es-
tablishing a connection between their precision and the geometry of the MRS. Here we are
interested in determining the position pu ∈ Rn of a given tag u thanks to RMs, which is cap-
tured in the vector ỹ ∈ RM for some M ∈ N∗. We also assume that the generally nonlinear
observation model y(pu) is known.

Assuming that ỹ contains a sufficient amount of non-degenerate RMs, the solution can be
determined by the intersection of the LoP as illustrated in Figure 2.2. However, in the
presence of measurement errors, these direct approaches cannot be implemented. In practice,
the design of the LS problem in order to position u, is widely used in localization systems
[Groves, 2013,Sahinoglu et al., 2008,Shen et al., 2008]. It consists in designing an estimator
p̂u that minimizes the observation residuals [Kay, 1993, Section 8.3]

p̂u ∈ argmin
pu∈Rn

∥ỹ− y(pu)∥2, (2.7)

i.e., solution of a nonlinear LS problem. Because of its nonlinearity, (2.7) must be solved
by iterative methods such as Gauss-Newton, Newton-Raphson [Kay, 1993, Section 8.9] or
Levenberg-Marquardt [Gavin, 2019]. However, these algorithms can be computationally
expensive, i.e., require a large number of iterations, which can be a problem for real-time
implementation. Moreover, the measurement ỹ may be noisy or corrupted (e.g., suffering
from NLoS phenomena) and could lead to large estimation errors on pu. These points
motivate a method that recursively considers the motion of the vehicles.

If a dynamic model pu is known, then it is now possible to recursively build the estimate p̂u

using Kalman filtering. The Kalman Filter (KF) filter is the best estimator, in the sense of
Mean Squared Error (MSE), for systems admitting linear models of observation and dynamics
under additive Gaussian noises [Chui and Chen, 1999, Chap. 9].

Since it is a minimizer of the MSE, the KF can be seen as a form of the recursive weighted
LS problem [Chui and Chen, 1999, Section 2.2]. In this paradigm, the covariance of the
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processes and the measurement noises play the role of weight matrices that appear in the
recursive MSE expression.

However, since the observations y(pu) are generally nonlinear, the KF cannot be applied
directly. In practice, the EKF is preferred and requires a linearization of the observation
model that includes the Jacobian ∂y/∂pu. This filter is not optimal but remains a standard
in the navigation systems, especially when multiple sensor fusion is used [Groves, 2013, Chap.
16] [Raol, 2016]. Moreover, there exists decentralized version of the KF in in the literature,
e.g., [Kovvali et al., 2013, Section 4.2]. In particular, this paradigm is transposable to the
MRS localization [Roumeliotis and Bekey, 2002], allowing tags’ positioning in a complex
geometry of the RMs with local information.

In this thesis, we aim to design localizability metrics that are independent of the structure
of the estimator in order to quantify the precision provided by the MRS property. However,
since LS formulations are common, as mentioned above, we explore this avenue first, before
giving an overview of more general criteria.

2.2.2 Dilution of Precision

In GNSS navigation, the DoP is commonly used to characterize localizability [Groves, 2013,
Section 7.4]. To define this concept, let U be the set of the U tags of a given MRS and K be
the set of the K anchors used to localize it. We assume that M distance measurements d̃ij are
captured within the MRS and collected in d̃ = [. . . d̃ij . . . ]⊤ ∈ RM where i, j ∈ U × (U ∪ K),
with i ̸= j. We need to solve the tag positioning problem, i.e., estimate pU = [. . .p⊤

u . . . ]⊤

where pu ∈ Rn for u ∈ U . To estimate the positions of the tags, assuming a sufficient number
of non degenerate ranging measurements [Aspnes et al., 2006], we can solve the following least
squares problem

p̂U ∈ argmin
pU ∈RU

∥d̃− d(pU)∥2, (2.8)

with d(pU) = [. . . dij(pU) . . . ]⊤ ∈ RM considering dij(pU) = ∥pi − pj∥ where the pair i, j ∈
U × (U ∪K), i.e., contains at least a tag. The LS problem (2.8) can be solved by performing
the following Gauss-Newton iterations [Kay, 1993]

p̂k
U = p̂k−1

U − J†
k

(
d̃− d(pk−1

U )
)
, (2.9)

with k ∈ N∗ to estimate pU , providing an initial estimate p̂0
U . In (2.9) we called the measure-

ment Jacobian Jk := ∂d/∂pU |pU =pk−1
U
∈ RM×nU . Note that in [Groves, 2013, Section 7.4],

clock offset is also considered as a state to be estimated. Since we can use TWR, to directly
compensate for it in the ToF estimation, we have omitted it for simplicity.
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Let us assume a Gaussian independent, uniform and centered distribution of the range mea-
surements d̃ ∼ N (d, IMσ

2
r) for a given noise level σ2

r > 0. Then, at convergence of (2.9), the
covariance of the error can be expressed as follows [Groves, 2013, Appendix B.2.1]

Σ := E{(p̂U − pU)(p̂U − pU)⊤} = Gσ2
r (2.10)

where G :=
(
J⊤

0 J0
)−1

is the DoP matrix. Overall, G can be viewed as a noise amplification
and used as a model to quantify the quality of the mesh geometry using criteria extracted
from the matrix. For example, for a single-tag system (U = 1), if n = 3, we have the
Horizontal, Vertical and Geometric DoPs defined as follows

HDoP =
√
G11 +G22, V DoP =

√
G33 and GDoP =

√
G11 +G22 +G33. (2.11)

These quantities can be seen as localizability cost functions. Indeed, if they increase, then
(2.10) implies that the error covariance is amplified, i.e., that the tag localizability is de-
creased. In the literature, they are used to analyze the localizability of tags located by
ToF-based systems [Lv et al., 2010,Xue and Yang, 2017]. More specifically, in GNSS-based
navigation, the impact of the V DoP is carefully studied because the satellites do not cover
a wide range of altitudes. To mitigate this effect, sensor fusion can be performed, for ex-
ample using opportunity RF signals as proposed in [Morales et al., 2016]. In wireless sensor
networks, especially for UWB-based systems, it is possible to place static sensors to reduce
the DoP. This is done by solving optimization problems using the above function as cost
functions [Zhao et al., 2020,Khalife and Kassas, 2019].

2.2.3 Cramér-Rao Lower Bounds

The DoP metric is very specific to the resolution of (2.8) and is based on Newton-Gauss
iterations in the case of Gaussian noise. For this reason, it is interesting to consider a
broader model in order to construct localization cost functions under weaker assumptions.

In our research, we used the Cramér-Rao Lower Bound (CRLB), which can be seen as a gener-
alization of the DoP [Lv et al., 2010]. This tool, introduced in 1945 by the Indian statistician
Rao [Rao, 1945] and formalized a year later by the Swedish mathematician Cramér [Cramér,
1946], is historically the first and most popular covariance bound [Ren, 2015, Kay, 1993].
Like the DoP, the CRLB is widely used as a performance tool for the wireless sensor network
positioning problem [Patwari et al., 2005, Prorok et al., 2012b, Shi et al., 2020]. Due to its
weak assumptions and relative ease of computation, this bound is applied to many use cases
involving parameter estimators to characterize their accuracy [Ren, 2015].
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Standard CRLB

Consider a parameter vector pU ∈ RnU , U ∈ N that we want to estimate and the measurement
vector ỹ ∈ RM with M ∈ N∗. We define the Probability Density Function (PDF) of ỹ as
follows f : RM ×RnU 7→ R+,pU → f(pU), which depends on the parameter. We assume that
f is twice continuously differentiable with respect to pU . Let be an unbiased estimator p̂U

of pU (i.e., such that E{p̂U} = pU), that has only access to the measurement ỹ, with a finite
covariance Σ (using the definition in (2.10)). Then p̂U verifies the following inequality [Kay,
1993, Chap. 3]

Σ ⪰ F−1
U (pU), where FU := −EpU

{
∂2 ln f
∂pU∂p⊤

U

}
, (2.12)

where FU is called the Fisher Information Matrix (FIM) and BU = F−1
U is the CRLB. The

notation A ⪰ B, given A,B ∈ Ra×a, a ∈ N∗, means that A − B is a positive semi definite
matrix.

The result (2.12) can be proved using both the Cauchy-Schwarz inequality and the unbiased
assumption as shown in [Kay, 1993, Appendix 3B]. Similar to the DoP matrix G defined in
(2.11), the CRLB can be used to construct localizability cost functions for MRS deployment.
In fact, the CRLB is particularly well adapted to the design of deployment policies that need
to be computationally efficient and rely on general but realistic precision criteria.

In fact, since (2.12) is a lower bound, we assume that “decreasing” BU improves localization
accuracy. However, the bound may be far from the actual performance of the estimators,
which may have access to more than just a single observation d̃, e.g., vehicle kinematics
model. To solve this problem, we can add some information to the FIM formulation (i.e.,
obtain a tighter bound), and this motivates a discussion on possible extensions of CRLB.

Extensions of the CRLB

First, we can consider that a robot can carry several tags with known positions in the robot’s
frame. This design allows to improve the localization by adding information to the estimator,
and also the robustness to failures by increasing the number of sensors. In this way, it is
possible to estimate the pose (position and attitude) of the robot, which adds constraints to
the estimator and improves its precision. Thus, this parameterization of the problem requires
that the CRLB be extended to these use cases in order to remain realistic.

In the recent literature, we can cite the FIM extensions to the SO(3) group [Boumal et al.,
2014, Chirikjian, 2018], which provides a specific CRLB formulation adapted to the rigid
transformations [Bonnabel and Barrau, 2015]. As an alternative to explicit parameter
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changes in the CRLB evaluation, it has been proved in [Menni et al., 2014] that the a poste-
riori application of constraints in the FIM derivation is equivalent to a reparameterization.
This result then allows the Constrained Cramér-Rao Lower Bound (CCRLB) introduced
in [Gorman and Hero, 1990] to be used instead of bounds based on a minimum number of
parameters, which require more complex derivations.

On the other hand, we also consider that a prior statistical model may be available to the
estimator, e.g., a vehicle dynamics model provided to an EKF. To include this information,
the Bayesian Cramér-Rao Lower Bound (BCRLB) defined in [Van Trees and Bell, 2007] can
be used. In addition to the measurement PDF f presented in (2.12), this CRLB requires a
statistical distribution of the parameter, generally independent of the observation. Typically,
for RF-based robot localization, incoming RMs are considered independent of a previous
position estimate that can be used as a prior using uncertainty propagation through the
vehicle dynamics. The BCRLB has been applied to evaluate the performance of position
estimators in wireless sensor network [Fritsche et al., 2013] and is well known for radar
applications [Ren, 2015].

Using some relaxing assumptions, the BCRLB can provide a recursive covariance bound
[Tichavsky et al., 1998]. This bound, called Recursive Bayesian Cramér-Rao Lower Bound
(RBCRLB), is less computationally demanding: the prior distribution can be hard to com-
pute, then, the recursive formula allows to obtain a faster approximation [Galy et al., 2015].
For linear dynamics, the bound takes the form of a Ricatti equation, similar to the Kalman
filter covariance recursion [Chui and Chen, 1999]. However, this bound is looser than the
BCRLB since it discards some information in its simplifying assumptions [Ren et al., 2015].

Finally, we considered another form of CRLB in our research: the Uniform Cramér-Rao
Lower Bound, which was designed for biased estimators [Hero et al., 1996,Eldar, 2007] based
on the biased CRLB presented in [Bell and Tian, 1968]. As we pointed out in Section 2.1.2,
the UWB-based RMs have a systematic bias that could be mitigated by motion planning.
However, the application of this family of bounds requires an explicitly parameter-dependent
bias model and seems to apply only to the linear model [Eldar, 2004]. Thus, these bounds
are difficult to implement directly in an experimental context. In particular, they require
prior calibration of the robot’s workspace to identify the bias model.

2.3 Formation Control

Once the modeling of localizability is given by a matrix covariance bound (or a DoP matrix),
we need to extract a scalar criterion to solve the MRS placement problem. In other words,
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we want to perform formation control for the MRS using a cost function that includes a
localizability criterion.

In this section, we present results from the literature that are closely related to localizability
optimization. Indeed, in the last decade, as the interest in MRS has grown, the distributed
swarm connectivity and then rigidity control have been increasingly studied. We can take
advantage of these works in order to generalize some of the algorithms to the localizability
optimization problem.

2.3.1 Distributed Connectivity Optimization

The paradigm of formation control is strongly related to graph theory [Bullo et al., 2009] and
such is the problem addressed in this thesis. Indeed, the problem of positioning the tags is in
general solved distributively, i.e., with local information provided to the tags’ neighborhoods.
Thus the MRS must at least be connected in order to position it, enabling measurements
between agents. For a positioning problem based on RMs, we consider the undirected graph
G = (E ,U ∪ K) as an elementary theoretical model. Let its vertices be the whole set of
agents U ∪ K, which is the union of the sets of tags (U) and anchors (K). On the other
hand, the edges of the graph E are defined as the union of the links between the anchor pairs
(since they have known position we assume the anchors’ sub-graph fully connected) and the
communicating pairs with at least one agent being a tag. We also assume that the graph G
is symmetric, i.e., if an agent i is able to communicate with j then the reciprocal is true.
Formally, the edge set E can be written as

E = {{k, k′} ∈ K ×K} ∪ {{u, i} ∈ U × (K ∪ U), i ∈ Nu} , (2.13)

where Nu is u’s neighbor set consisting of the agents communicating with u. With this model
it becomes clear that E , which models the RMs, strongly influences the positioning of U , i.e.
the localizability of the tags. Therefore, the connectivity of the graph, driven by the set E
defined in (2.13), would be the first step to investigate in order to improve the positioning.

If we denote N = |U ∪ K| as the cardinality of the agents, the graph G can be characterized
by three different matrices. First, the adjacency matrix A ∈ NN×N is defined as

Aij := 1Nj
(i); i, j ∈ [1, N ]2,

where 1A(a) is the indicator function of the set A such that 1A(a) = 1 if a ∈ A and zero



21

otherwise. Second, the degree (or valency) matrix D ∈ NN×N with coefficients

Dii = |Ni| and Dij = 0; ∀i, j ∈ [1, N ]2, i ̸= j,

that stores the number of neighbors for each agent in the network. These two matrices allow
to define the following Laplacian Matrix

L := D−A ∈ ZN×N , (2.14)

which contains all the information about the graph connectivity. Therefore, this matrix is
used to characterize the connectivity of MRS and in particular for robot formation control
[Michael et al., 2009, Ikemoto et al., 2020]. Note that as an alternative to (2.14), L can also
be defined thanks to the directed graph incidence matrix. This matrix, denoted H ∈ ZN×|E|

is defined by first assigning an arbitrary direction i → j to each edge {i, j} of E , and then
setting each element as follows:

for {i, j} ∈ E , k ∈ U ∪ K, Hk,i→j =


1 if k = i,

−1 if k = j,

0 otherwise.

Therefore, L can be seen as a generalized square of the incidence matrix, namely L = HH⊤.

To perform such a connectivity control, it is common to choose the Fiedler eigenvalue λ2

[Barrière et al., 2013] as the reward function and set up a maximization problem to improve
connectivity. λ2 is defined as the smallest nonzero eigenvalue of L, its subscript 2 indicates
that it is, if the graph is connected, the second in ascending order, i.e. λ1 ≤ λ2 ≤ · · · ≤ λN .
In fact, L is by definition rank-degenerate (its kernel has at least one dimension, due to the
zero-sum property of its columns and its rows) and has positive eigenvalues, see [Bullo, 2019,
Section 6.2]. We emphasize that λ2 > 0 implies that G is connected [Bullo, 2019, Corollary
6.8] and this fact justifies the design of such reward functions.

The optimization of the Fiedler eigenvalue of a graph G representing a MRS requires a de-
centralized algorithm for the sake of scalability and robustness to the topology of the system.
The work of Yang et al. [Yang et al., 2010] proposes a distributed estimator of λ2 based on the
power iteration algorithm. In [Michael et al., 2009], a distributed and topology-responsive
control law that penalizes distance constraint violations (modeling the disconnections) was
successfully implemented on a multi-UGV system. The more recent journal article [Cai et al.,
2017] implements a Fiedler-based control law to improve the connectivity of UAV formations.
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Finally [Ikemoto et al., 2020] presents a fast distributed robot position and Laplacian matrix
eigenvector estimator that significantly improves distributed computation to increase λ2 in a
swarm of ground robots.

2.3.2 Rigidity Maintenance Problem

In addition to connectivity, which considers abstract communication links between agents,
the notion of rigidity includes the geometry of physical edges and vertices. In this paradigm,
largely inspired by civil engineering [Tay and Whiteley, 1985], a framework is considered
instead of a graph. The framework (G,p) considers both the communication graph G and
the vector p containing all agents j ∈ U ∪ K positions. Its vertices are the positions pj and
its edge weights are the distances dij for i ∈ Nj (respectively, for j ∈ Ni since the graph are
assumed to be symmetric). The difference between G and (G,p) is illustrated in Figure 2.4,
where a four-agent connectivity graph is shown next to its corresponding three-dimensional
rigidity framework.
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Figure 2.4: Rigidity graph and rigidity framework

The notion of rigidity comes in several forms. The (G,p) framework’s global rigidity occurs
when it is uniquely realized, i.e., given the distances between neighbors, their relative position
are uniquely defined [Connelly, 2005,Whiteley, 1996]. For example, the framework shown in
Fig. 2.4b is not globally rigid because 2 can be moved around the [p1,p3] segment without
changing d12 and d23. Note that in [Aspnes et al., 2006], the notion of rigidity is used to
prove the unicity of the solution of the positioning problem.

However, for MRS formation control, infinitesimal rigidity, which is a local version of rigidity,
is used rather than global rigidity because of its simple algebraic definition [Zelazo et al.,
2012]. This type of rigidity uses the rigidity matrix, which can be seen as an incidence
matrix H weighted by normalized relative positions p̄ij = (pi− pj)⊤/dij [Tay and Whiteley,
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1985]. Note that the DoP matrix defined in (2.10) is related to the p̄ij coefficients, since
p̄ij = ∂dij/∂pi is present in the LS Jacobian J. This remark emphasizes the connection
between rigidity and localizability optimization. This is not surprising, since the (global)
rigidity of (G,p) implies relative position uniqueness under perfect observation of the distance.
The connection between these two notions is made explicitly in Chapter 5.

By definition, the incidence matrix, which is a square root of the Laplacian matrix, is rank
deficient [Bullo, 2019, Section 9.2]. The rigidity matrix is also rank deficient, and a Fiedler-
like optimization scheme, which discards its nontrivial kernel, can be used to improve the
rigidity of the MRS [Zelazo et al., 2012]. This control law has been successfully implemented
by Zelazo et al. in a multiple-UAV system and has successfully improved the rigidity of the
MRS [Zelazo et al., 2015].

Alternative strategies that use other types of rigidity, such as ratio-of-distance rigidity [Cao
et al., 2020] can also be used in MRS formation control. Among these strategies we can also
mention the bearing rigidity theory [Michieletto et al., 2021], which is strongly related to the
localizability of systems positioned by AoA (see note 6.2 in Chapter 6). In [Zhao and Zelazo,
2016] the author proposes a control law for MRS based on the bearing Laplacian matrix.

Mathematical Tools for CRLB-Based Localizability Optimization

In our work, we use the CRLB localizability design and exploit the RMs FIM structure
presented in [Patwari et al., 2005]. This structure is very similar to a weighted Laplacian
matrix [Le Ny and Chauvière, 2018] and this fact is turned into an advantage to design
distributed deployment algorithms based on pre-existing rigidity or connectivity related work.

For the design of the localizability cost functions, we mainly use the optimal design of ex-
periments theory [Pukelsheim, 2006], that is widely used in the sensor network domain, to
design scalar criteria extracted from a characteristic matrix [Sagnol, 2010]. For example,
taking the trace of a covariance matrix (referred as the A-optimality strategy) as penalty
is equivalent to set a mean uncertainty minimization problem [Carrillo et al., 2012]. Note
that the Fiedler value cost function mentioned above for rigidity maintenance is part of the
optimal design of experiments (called E-optimality strategy). Alternative strategies include
cost functions based on leveraging the determinant or trace of the matrices to be optimized,
those advantages and limitations are discussed extensively throughout Chapter 5.

Then the localizability cost functions can be minimized using local policies, i.e., gradient
based motion planning [Khatib, 1986, Lynch and Park, 2017] as in [Zelazo et al., 2015] for
rigidity. Alternatively, the localizability of a system can be improved using non-myopic
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algorithms, i.e., trajectory generation, as proposed in [Papalia and Leonard, 2020] based on
our previous work. However, trajectory generation is beyond the scope of this thesis and is
left for future work.
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CHAPTER 3 RESEARCH OBJECTIVES, CONTRIBUTIONS AND
DOCUMENT OUTLINE

“You will never reach your destination if you stop and throw stones at every dog
that barks.”

– Sir. Winston Churchill (1874-1965)

Since this thesis is article-based, we provide in this chapter the guideline of our contributions
and a description of the investigated research hypotheses. Therefore, we recall the specific
research objectives, provide the outline of the manuscript and present the overall organization
of the contributed articles in the following sections.

3.1 Research Organization

We outline how our work is structured in terms of goals, research hypotheses, and time
constraints in this section.

3.1.1 Research Objectives and Hypotheses

The following research question can be used to summarize the thesis’s overall objective:

How to optimize the localizability of an MRS equipped with UWB sensors?

Our research was divided into three different research axes to answer this question:

Theme 1 Mitigation of Errors in UWB Ranging Measurements;

Our goal in this thesis project is to create MRS deployment policies to optimize localiz-
ability and test them on real-world robots. For our experiments, we used ground MRSs
equipped with UWB sensors performing ranging. However, as mentioned in Chapter
2, it is necessary to improve UWB measurements captured by a pair of sensors before
carrying out the deployment that mitigates DoP phenomena. In particular, the as-
sumption of unbiased estimators taken in (2.12) for the CRLB computation is violated
if systematic measurement biases are not properly calibrated. The LoS hypoth-
esis for measurements that produce near Gaussian RMs PDFs become false when the
ranging data is contaminated by NLoS or/and MP outliers, as mentioned in Section
1.2.1.
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Hence, the CRLB may be inaccurate in that scenario and result in an inadequate
deployment of the MRS. We therefore assume that these effects would be significantly
reduced by the estimators. Then, we seek to experimentally verify the following two
hypotheses:

Hypothesis 1. “The bias on UWB ToF-based measurements can be efficiently cali-
brated”

Hypothesis 2. “The corrected range measurements can be approximated with a Gaus-
sian model”. In particular, the NLoS and MP outliers in the upcoming MRS deployment
can be neglected.

Theme 2 Cooperative Localizability Optimization;

The mitigation of DoP effects, i.e., the localizability induced by the MRS geome-
try, is covered in this theme. In this axis we sought to develop CRLB-based MRS
deployment policies improving tag positioning that are scalable and real-time im-
plementable. Therefore, is it necessary to design algorithms that enable distributed
deployments (i.e., where each agent can only observe its neighbors’ estimates). Then,
two hypotheses in this theme remain to be validated:

Hypothesis 3. “The decrease of the CRLB significantly enhances the tags’ position
estimates in practice.” In fact, since it is a lower bound, there is no assurance that
the estimator’s performance will be close to the CRLB.

Hypothesis 4. “The MRS distributed deployment algorithms can be performed in real-
time despite noisy measurements.” It is essential to validate this hypothesis because a
practical deployment policy relies on noisy position estimates to control the robots.

With the help of large-scale simulations and physical implementations on smaller MRSs,
we wish to verify these hypotheses. Additionally, the deployment of robots carrying
multiple tags must be managed, utilizing the CCRLB, and validated in the same way.

Theme 3 Extensions to Localizability.

The Gaussian model of RMs (i.e., Hypothesis 2) may be inaccurate at long range.
Namely, the performance of LDE estimators in the UWB chips may decrease signifi-
cantly if the received power becomes low. We intend to extend the localizability cost
functions to range-deteriorated measurement models, in order to address this problem.
By adding this distortion model to the CRLB, we aim to design a tighter (i.e., more
realistic) bound.
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Both the standard CRLB and the DoP characterize the localizability at a given time,
i.e., for a fixed MRS configuration p. However, deployment strategies relying on these
instantaneous information models might be inefficient for estimators that track posi-
tions over time, such as Kalman filters. For instance, once the estimator has converged,
if a brief weak DoP configuration occurs, it will result in a significant (and time costly)
MRS redeployment for a negligible gain of precision. Then, using the BCRLB, we wish
to provide a more realistic localizability cost function than the traditional CRLB, BY
leveraging prior information. Additionally, this paradigm enables the theoretical cou-
pling of estimation and deployment in path planning. We aim to propose a method for
the EKF, a popular navigation filter.

For both of these extensions, we seek experimental confirmation of the following claim:

Hypothesis 5. “Enhanced localizability models yield cost functions closer to estimator
performance than classical ones.”

The BCRLB allows for fixed anchor placement algorithms where the tags’ position are
only known through probable operation zones. This makes it possible to place anchors
in zones of operation with complex geometries. In these scenario, the tags’ positions
are probabilistic and only their PDFs remain known, defining its probable zone of
operation.

Hypothesis 6. “BCRLB allows to design computationally effective anchor placement
policies when the PDF of their position is known a priori.”

We aim to validate this last hypothesis through simulation.

3.1.2 Project Organization

This thesis project was co-advised between Polytechnique Montréal (Canada) and ISAE-
Supaéro (France). It was planned, with 50% of the research being conducted in each labora-
tory, namely the Mobile Robotics and Autonomous Systems Laboratory (MRASL, Polytech-
nique) and the Department of Electronics, Optronics, and Signal Processing, respectively
(DEOS, ISAE). The timeline of the project is given in Figure 3.1.

This doctoral project is in the continuity of the candidate’s Master of Science thesis [Cano,
2019], presented in 2019 in the same research group at Polytechnique Montréal. This master’s
project aimed to develop a localization system based on UWB using a ToA protocol. The
network’s synchronization, which was essential, as highlighted in Chapter 2, was wireless
and performed by the RF beacons. The UWB board used in this project has been again
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← 2019 2020 2021 2022 2023 →

• ⋆

MRASL (Polymtl)
DEOS (ISAE)

• Qualifying examination
⋆ Thesis Defense

Figure 3.1: Thesis timeline

used in this thesis and is presented in Figure 4.1. Additionally, the embedded code that
implements the SSTWR and is used to validate our deployments is derived from the ToA
protocol presented in [Cano et al., 2019], which was the result of the masters’ work.

3.2 Contribution

We now list the contributions made in this thesis. The document’s outline is presented after
a brief overview of the submitted scientific papers.

3.2.1 Contribution History

Our initial objective was to pursue the prior work of our research team, which has been
presented at the American Control Conference (ACC) in Milwaukee, USA, in 2018 [Le Ny
and Chauvière, 2018]. The design of the localizability cost functions was discussed in this
work, along with some connections to rigidity theory and decentralized optimization. In that
work, the robots were considered as single points and a gradient descent was applied on the
localizability cost function in order to provide the optimal geometry.

We then extended this work in [Cano and Le Ny, 2021] to robots carrying several tags, using
distance constraints in the CRLB parameterization. This work was presented at the 2021
IEEE International Conference on Robotics and Automation (ICRA’21) in Xi’An, China in
June 2021. However, the validation of these preliminary results were only simulated, and we
aimed to implement the planner on hardware.

In [Cano et al., 2022b] we proposed a method to compensate for clock and RxP induced
biases for ToF measurements taken by UWB transceivers. In particular, we validated them
for the SSTWR protocol used in the later deployment work. In doing so, we verified the
Hypothesis 1 to a reasonable degree, which was a prerequisite for a physical implementation
of the planers using CRLBs. This article was published in the IEEE Robotics and Automation
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Letters (RA-L) in January 2022 and presented at the 2022 IEEE International Conference
on Robotics and Automation (ICRA’22) in Philadelphia, United States, in May 2022.

The article [Cano and Le Ny, 2023], which can be considered as the heart of our work on
MRS localizability, builds on [Le Ny and Chauvière, 2018] and [Cano and Le Ny, 2021]. It ex-
tended the use of constrained localizability to relative position in three dimensions, allowing
the improvement of attitude estimation. Moreover, it allowed to highlight the link between
localizability and rigidity theory by studying the structure of the FIM. In particular, theorems
guaranteeing the invertibility of the FIM (and thus the existence of the CRLB) have been
proposed. These two preliminary theoretical works allowed to propose a decentralized gra-
dient descent of the different localizability cost functions proposed in [Le Ny and Chauvière,
2018]. Then, both simulated and experimental results aimed to validate the Hypotheses 3
and 4. This article was submitted to IEEE Transactions on Robotics (T-RO) in February
2022, then revised in October of the same year and conditionally accepted in January 2023.

In [Cano et al., 2022c] we extended the standard CRLB of the previous work, which assumed
a constant variance RMs, to distance degraded measurements. In doing so, we allowed the
inclusion of power fading effects by fitting the experimental data to the CRLB formulation. In
addition, another goal of this paper was to model “smooth” communication losses over large
distances, as an alternative to a formal time-varying communication graph, which is more
complicated to implement in the MRS deployment algorithm. This RM model adds some
information to the CRLB that makes it tighter (and thus more realistic), which validates
Hypothesis 5.

In the article [Cano et al., 2022a] we proposed a real-time motion planner tailored to estima-
tors that have access to a Gaussian prior. The main difficulty was to compute the CRLB,
which is Bayesian and is only calculable through numerical schemes. In this work, we imple-
mented a BCRLB-based gradient descent method that uses the posterior distribution of an
EKF as input to deploy a MRS. Hypothesis 5 was satisfied by this implementation.

These last two articles, [Cano et al., 2022c] and [Cano et al., 2022a], were presented at the
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’22) in
Kyoto, Japan in October 2022.

Finally, in [Cano et al., 2023], we proposed an implementation of robust KF based on M-
estimation. It presented a method using the Huber function and RxP to mitigate MP outliers
for UWB measurements in an obstructed indoor environment. This work, although closely
related to the project due to its experimental aspects for UGV navigation in a realistic
environment, is distant from the main subject of this thesis since it involves an a posteriori
filtering method that does not quantify or optimize localizability. Therefore, we considered it
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as an additional contribution to the Axis 1, i.e., not included in this manuscript. This article
has been accepted for presentation at the 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’23) to be held in Rhodes, Greece, in June 2023.

All of the above contributions and their status are summarized in Table 3.1 in chronological
order of their last submission/acceptance and with their corresponding Chapter.

Table 3.1: List of publications. (Chronological order)
Co-Authors Initials (CAI) : Jérôme Le Ny (JLN), Gaël Pagès (GP), Éric Chaumette
(ÉC), Corentin Chauffaut (CC) and Yi Ding (YD).
Theme color code : 1 (red); 2 (green); 3 (blue)

Citation Title CAI Publication
[Cano and Le Ny, 2021] Improving Ranging-Based Location

Estimation with Rigidity-Constrained
CRLB-Based Motion Planning

JLN ICRA’21

[Cano et al., 2022b]
Article 1/Chap. 4

Clock and Power-Induced Bias Correc-
tion for UWB Time-of-Flight Measure-
ments

GP
ÉC
JLN

RA-L
&ICRA’22

[Cano et al., 2022c]
Article 3/Chap. 6

Optimal Localizability Criterion for Po-
sitionning with Distance-Deteriorated
Relative Measurements

GP
ÉC
JLN

IROS’22

[Cano et al., 2022a]
Article 4/Chap. 7

Maintaining Robot Localizability With
Bayesian Cramér-Rao Lower Bounds

CC
GP
ÉC
JLN

IROS’22

[Cano and Le Ny, 2023]
Article 2/Chap. 5

Ranging-Based Localizability Optimiza-
tion for Mobile Robotic Networks

JLN T-RO

[Cano et al., 2023] A Robust Kalman Filter Based Ap-
proach for Indoor Robot Positionning
with Multi-Path Contaminated UWB
Data

YD
GP
ÉC
JLN

ICASSP’23

3.2.2 Manuscript Outline

The organization of the manuscript, consisting of four selected articles and one additional
chapter, is as follows.

First, Chapter 4, [Cano et al., 2022b], allows to present the low-level part of the UWB-based
SSTWR protocol used in all our experiments. In particular, it highlights that the range
distributions are close to Gaussian in LoS. It also allows to understand the systematic bias
phenomena and to provide an original method to calibrate them.
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Then, Chapter 5, [Cano and Le Ny, 2023], first presents theoretical results on the MRS local-
izability and provides optimization problem formulations in order to improve the positioning
accuracy of the tags. Then, distributed gradient descent schemes, or Lagrangian in the case
of multi-tag robots, are proposed to reduce the localizability cost function. Finally, some
illustrative simulation and experiments are provided.

Subsequently, the extension of localizability to range deteriorated measurements is given in
Chapter 6, [Cano et al., 2022c], with an experimental example. Bayesian localizability is
treated in Chapter 7 , [Cano et al., 2022a], for its integration into the EKF framework and in
Chapter 8 as well. The latter chapter presents some additional results on localizability-driven
anchor placement considering a prior PDF on the tag positions.

The contributions made by this thesis are then discussed in Chapter 9 and summarized in
Table 9.1. Finally, Chapter 10 concludes this thesis.
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CHAPTER 4 ARTICLE 1 : CLOCK AND POWER-INDUCED BIAS 
CORRECTION FOR UWB TIME-OF-FLIGHT MEASUREMENTS

Published in IEEE Robotics and Automation Letters, January 9th, 2022.

Coauthors : Justin Cano1,2, Gaël Pagès1, Éric Chaumette 1, Jérôme Le Ny2

1 DEOS, ISAE-Supaéro, Toulouse France.
2 EE Dept., Polytechnique Montréal, QC, Canada & GERAD, Montréal, QC, Canada.

Abstract

Ultra-Wide Band (UWB) communication systems can be used to design low cost, power 
efficient and precise navigation systems fo r mobile robots, by  measuring the Time of  Flight 
(ToF) of messages traveling between on-board UWB transceivers to infer their locations. 
Theoretically, decimeter level positioning accuracy or better should be achievable, at least in 
benign propagation environments where Line-of-Sight (LoS) between the transceivers can be 
maintained. Yet, in practice, even in such favorable conditions, one often observes significant 
systematic errors (bias) in the ToF measurements, depending for example on the hardware 
configuration and relative poses between r obots. This paper proposes a ToF error model that 
includes a standard transceiver clock offset term and an additional term that varies with the 
received signal power (RxP). We show experimentally that, after fine correction of the clock 
offset term using clock skew measurements available on modern UWB hardware, much of the 
remaining pose dependent error in LoS measurements can be captured by the (appropriately 
defined) RxP-dependent t erm. This leads us to propose a  s imple bias compensation scheme 
that only requires on-board measurements (clock skew and RxP) to remove most of the 
observed bias in LoS ToF measurements and reliably achieve cm-level ranging accuracy. 
Because the calibrated ToF bias model does not depend on any extrinsic information such as 
receiver distances or poses, it can be applied before any additional error correction scheme 
that requires more information about the robots and their environment.

4.1 Introduction

Mobile robots require accurate position estimates in real-time to operate. Satellite Navigation 
Systems provide relatively reliable localization but only when the line-of-sight (LoS) between 
the receiver and sufficiently ma ny sa tellites ca n be  ma intained. He nce, in door an d covered 
environments require alternative positioning systems, e.g., using machine vision or short-



33

range radio-frequency (RF) communications [Groves, 2013]. This paper focuses on the latter,
more specifically on Ultra-Wide Band (UWB) systems (see Fig. 4.1), which can provide low-
cost, low-power, high-accuracy RF-based localization solutions for mobile robots, with a
precision of the order of a decimeter in favorable conditions [Sahinoglu et al., 2008,González
et al., 2009,Amanda Prorok, 2013,Decawave, 2018,Ledergerber and D’Andrea, 2017,Hamer
and D’Andrea, 2018,Mai et al., 2018,Preter et al., 2019,Van Herbruggen et al., 2019] and a
refresh rate of the order of 10 to 100 Hz [Cano et al., 2019].

RF-based localization protocols most commonly rely on estimating the Time-of-Flight (ToF)
of messages exchanged between transceivers, by comparing the transmission (Tx) and recep-
tion (Rx) times of these messages. ToF measurements can then be converted to distance
measurements or used to synchronize some of the nodes [Sahinoglu et al., 2008,Cano et al.,
2019]. By design, UWB systems are relatively resilient to common sources of errors in ToF
measurements [Sahinoglu et al., 2008]. Nonetheless, large positive errors can occur in non
line-of-sight (NLoS) configurations, when the direct path between transceivers is blocked by
an obstacle and the receiver detects instead a reflected signal. As a result, much of the
literature on UWB-based localization focuses on detecting and mitigating the effect of NLoS
measurements, see, e.g., [González et al., 2009, Marano et al., 2010, Bregar and Mohorčič,
2018,Zhu and Kia, 2019].

However, even in LoS conditions, ToF measurements are subject to errors due to transceiver
clock drift, antenna delays, signal distortion, multipath interference and timestamp triggering
uncertainties by the electronic circuits [Decawave, 2018]. The Rx timestamp accuracy is
particularly dependent on signal distortion and deteriorates as the received power (RxP) of
the direct path signal decreases [Decawave, 2018, p. 10]. These errors should be taken into

Figure 4.1: Custom communication board used in our experiments. The UWB transceiver
itself (Decawave DWM1000) and its omnidirectional antenna are encircled in red
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account for accurate localization, since an offset of just one nanosecond in ToF estimation
results in a ranging error of almost thirty centimeters, which is about the maximum tolerable
for many indoor operations.

In practice, the systematic errors (bias) in UWB measurements need to be captured by
empirical models that are sufficiently simple to be used in real-time positioning algorithms.
González et al. [González et al., 2009] fit a model of two-way ranging (TWR) measurement
bias in terms of distance between the transceivers, while [Ledergerber and D’Andrea, 2018]
and [Zhao et al., 2021] also include the relative antenna orientations in their models, for
TWR and time-difference of arrival (TDoA) localization schemes respectively. Unfortunately,
such models depend on extrinsic rather than intrinsic measurements, which are in fact often
precisely what the higher-level localization schemes aim to estimate. For instance, distance
pseudo-measurements are deduced from ToF measurements in various ways depending on
the ranging protocol used at the application level (type of TWR scheme, TDoA, Time-
of-Arrival (ToA), etc.) and full relative pose measurements between transceivers require
additional sensors. Hence, any error in the distance or pose estimation scheme is fed back
in the low-level measurement calibration, and these bias models are highly dependent on
the specific localization scheme used. These models also do not take advantage of all the
information available at the physical layer, in particular the channel impulse response (CIR)
at the receiver, as well as the relative clock frequency drift measurements. Because the Rx
timestamp is estimated from the CIR, errors can be fundamentally tied to it. Moreover, since
the CIR and in particular the RxP is highly dependent on the antenna radiation pattern, it
is quite plausible that most of the observed pose dependent bias can be already explained
by the CIR features. Calibration models based on CIR features should also be less sensitive
to system design choices such as level of transmitted power or type of antenna used, and to
environmental characteristics such as multipath propagation.

In this paper, we introduce a simple UWB ToF bias model for LoS measurements, capturing
transceiver clock offset and RxP-induced bias, together with a methodology to calibrate such
a model.

The application note [Decawave, 2018] mentions a dependency of ToF measurement errors
on RxP, but proposes again to calibrate ranging bias models (specifically for TWR) that are
based indirectly on distance rather than CIR measurements, as in [González et al., 2009] for
example. Savic et al. [Savic et al., 2016] propose a general model for TOA ranging measure-
ments that includes a bias term for LoS measurements, but this term is constant (independent
of the channel parameters) and the paper focuses on NLoS error mitigation. Wymeersch et
al. [Wymeersch et al., 2012] introduce machine learning-based methods to predict the rang-
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ing bias in TWR from the full CIR and a distance estimate, without distinguishing between
LoS and NLoS measurements. As we discuss in Section 4.3, their TWR calibration process
can benefit from a preliminary clock skew correction step leveraging information available on
more recent hardware. Compared to these papers, we focus exclusively on LoS measurements
and develop a lightweight model linking ToF measurement bias to a type of RxP measure-
ments. This model does not require extrinsic information such as relative transceiver poses,
nor the full CIR but only its samples that are directly used in practice to determine the Rx
timestamp. In a TWR localization experiment, we show that this model can capture most
of the observed ranging bias. Moreover, this ToF bias model can be used with any type of
localization scheme, e.g., TWR, TDoA, or ToA.

The outline of the paper is as follows. Section 4.2 introduces the ToF error model. Section
4.3 proposes a TWR-based clock offset correction scheme, which allows us to isolate the
remaining RxP-induced bias in ToF measurements. This RxP-induced bias is modeled in
more details in Section 4.4, which also introduces a methodology to calibrate it. Finally,
Section 4.5 demonstrates in a TWR experiment that most of the bias in LoS measurements
is captured by the model, and discusses further applications.

4.2 Time-of-Flight Measurement Model

Ideally, an UWB transmitter A and receiver B could measure the ToF τAB of a signal traveling
in a direct path between them (LoS conditions) by taking the difference between the message
reception time tR and transmission time tT , i.e., τAB = tR − tT . This would provide for
example a distance measurement dAB = c τAB between the nodes, with c denoting the speed of
light. However, a first difficulty is that each node measures time slightly differently according
to its own imperfect clock. Second, even if the nodes were perfectly synchronized, timestamp
measurements at each node are imperfect.

As mentioned previously, a dominating factor for the accuracy of tR measurements is the
received signal power (RxP) at B, PB

R . Indeed, the statistical performance of the algorithm
estimating tR, called the Leading Edge Detector (LDE), is known to be dependent on the
received Signal to Noise Ratio (SNR) [Sharp et al., 2009, Decawave, 2018]. As a result, we
can model the timestamp measurement at the receiver as

tBR ≈ tR + δB
c (tR) + δB

p (PB
R ),

where δB
c (tR) captures the clock offset of node B at absolute time tR and δB

p is the RxP-
dependent error.
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The timestamp measurement tAT at the transmitter follows the simpler model

tAT ≈ tT + δA
c (tT ).

Taking the difference, we obtain the following ToF measurement model

tBR − tAT = τAB + δB
c (tR)− δA

c (tT ) + δB
p (PB

R ) + ν, (4.1)

where ν is a residual unmodeled error. For example, ν could include additional timestamp
measurement errors due to imperfect calibration of antenna propagation delays.

For short-range communication systems such as those relying on UWB, the difference between
tR and tT is of the order of the microsecond at most (which corresponds to a distance between
nodes of about 300 m). This duration is too small for the offset δc of even low-grade electronic
clocks to vary significantly. As a result, it is generally appropriate for short-range systems
to use the simplified model

tBR − tAT = τAB + ∆B/A
c (tR,T ) + δB

p (PB
R ) + ν, (4.2)

where one can take for example tR,T = (tT + tR)/2 and ∆B/A
c (t) represents the offset of

the clock of B with respect to the clock of A at time t. Then, to obtain accurate ToF
measurements from the model (4.2) in practice, it is necessary to remove this clock offset
as well as the RxP-induced error δB

p (PB
R ). These topics are discussed in Section 4.3 and 4.4

respectively.

4.3 Clock Offset Correction: the Case of TWR

Clock offset correction is a well studied topic and is strongly dependent on the localization
scheme. Hence, our discussion is short and focuses for concreteness on one of the simplest
ranging scheme, single-sided TWR (SSTWR), see Fig. 4.2.

tAT1

tBR1

tAR1

tBT2

tAT2 t
A
R2

Transceiver B

Transceiver A

Poll
message

Response
message

Figure 4.2: Single-Sided TWR protocol

A SSTWR transaction involves two transceivers A and B. A transmits at time tT1 a message
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to B, which is received at time tR1 . B responds at tT2 and this message is received at A at
time tR2 . We assume that the duration of the transaction is sufficiently short (of the order of
a millisecond) to neglect the relative motion of the nodes. The TWR protocol tries to reduce
the clock-offset error without synchronizing the nodes, by performing the following operation

(tBR1 − t
A
T1) + (tAR2 − t

B
T2) =

2τAB + ∆B/A
c (t1)−∆B/A

c (t2) + δB
p (PB

R ) + δA
p (PA

R ) + ν,

where ν is another residual error term and t1 ≈ (tT1 + tR1)/2, t2 ≈ (tT2 + tR2)/2. From this
expression, we can approximate the ToF τAB by τ̂AB with

τ̂AB = τ̃AB

+ ∆B/A
c (t2)−∆B/A

c (t1)
2 −

δB
p (PB

R ) + δA
p (PA

R )
2 . (4.3)

where τ̃AB := tB
R1

−tA
T1

+tA
R2

−tB
T2

2 .

Although standard versions of TWR approximate τAB by the first term and neglect in par-
ticular the difference rB/A

c := (∆B/A
c (t2)−∆B/A

c (t1))/2 between clock offsets at the first and
second messages, this term is often too large for accurate indoor navigation. To illustrate the
impact of rB/A

c , if we assume a constant typical clock skew of γ := ∂∆B/A
c /∂t = 10−6 and a

transaction time of t2 − t1 = 2 ms, we obtain rB/A
c = 1 ns, which, as we noted before, would

correspond to a ranging error of about 30 cm.

To correct this error, as explained in [Cano et al., 2019], we can leverage clock skew mea-
surements γ̃(t) already computed by the receiver of an UWB signal, which are recorded in
the register set of current transceivers [Decawave, 2017, p.150]. Indeed, the receiver needs
to track the transmitter’s oscillator frequency through a process called timing recovery [Al-
dubaikhy, 2012, p.38], [Png et al., 2008] in order to estimate the reception time of an UWB
message with the correlation-based LDE algorithm. However, the measured clock skew γ̃(t)
is a noisy signal, which needs to be filtered to produce a more reliable estimate γ̂(t). The
estimated clock skew γ̂ can then be used to build an estimate of the residual clock error
during a given transaction, as follows

r̂B/A
c = 1

2

∫ t2

t1
γ̂(τ)dτ ≈ t2 − t1

2 γ̂, (4.4)

where γ̂ is the clock-skew estimate computed at time tAR2 by agent A, with its own skew
measurement γ̃(tAR2).
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The clock skew estimate γ̂ can be updated at each SSTWR transaction k. Let’s denote tk
the timestamp tAR2 of transaction k. To filter γ̃(tk) and produce γ̂(tk), we adapt our approach
in [Cano et al., 2019] and use a Kalman filter with the following clock skew model

γ̇ = ζγ,

γ̃(tk) = γ(tk) + νγ,
(4.5)

where ζγ is a centered Gaussian white noise with power spectral density σ2
γγ and νγ a discrete

centered Gaussian random variable with covariance σ2
γm. The constants σγγ, σγm are tuned

as explained in [Cano et al., 2019].

4.4 RxP-Induced Error Correction

In this section, we present a methodology to estimate and correct the RxP-induced term
δi

p(P i
R) in the ToF measurement model (4.1) or (4.2). This methodology requires selecting

appropriate RxP measurements PR at the receiver and then fitting the function δi
p(PR).

4.4.1 Most Informative RxP Measurements

The UWB transceivers used in our experiments (Decawave’s DW1000) directly record two
measures of received power in their register set [Decawave, 2017], as follows. Let s(ti) =
r(ti) + jq(ti) ∈ C be the complex-valued CIR sampled at times ti, 1 ≤ i ≤ N , by an UWB
module receiving a message. The Average Received Power (ARP) is defined as

Pa = 10 log10

(
1
N2

N∑
i=1
|s(ti)|2

)
− Pra,

with Pra a reference power level. In constrast, the First Path Power (FPP) is defined as

Pf = 10 log10

(
1
32

∑
i∈L
|s(ti)|2

)
− Prf ,

where Prf is another reference power level and L = {i1, i2, i3} is a set of three characteristic
amplitudes used by the LDE algorithm to determine the reception time of the message
[Decawave, 2017, p.40].

Our experiments lead us to choose the FPP instead of the ARP as a measure of received
power to calibrate the function δp, since we found a clearer correlation between bias and Pf

compared to Pa. One intuitive explanation is that Pf is directly used in the LDE algorithm
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and hence strongly affects its estimates. Moreover, Pa is more sensitive to disturbances due
to multipath propagation, making the calibrated error model less robust to environmental
changes. In practice, we noticed that the behavior of the FPP measured by transceivers
in LoS and sufficiently far (beyond 50 cm) from reflective surfaces (walls, ground, etc.) is
repeatable at different locations. Hence, in the following we identify Pf as measure of RxP.

4.4.2 RxP-Induced Error Estimation Method

Based on our experimental results, we postulate for a given receiver i an RxP-induced error
term of the form

δi
p(P i

R) = Ki + δp(P i
R), (4.6)

where Ki is a receiver specific constant and the function δp is independent of i. In other
words, the RxP-induced error for each UWB receiver (following a particular hardware design)
is simply a shifted version of the function δp to determine. The constant Ki can be due to
fabrication process variations for example.

In this section, we explain how to estimate the function δp. This can be done by taking ToF
measurements between two transceivers A and B at various level of RxP, provided we can
remove first the clock offset error ∆B/A

c in (4.2). To do so, we can rely on the SSTWR scheme
of Section 4.3. From (4.3), we see that after estimating the residual clock error r̂B/A

c from
(4.4), we get

δA
p (PA

R ) + δB
p (PB

R )
2 ≈ τ̃AB −

dAB

c
+ r̂B/A

c .

If we can assume PA
R ≈ PB

R = PR during the TWR exchange, then we obtain from (4.6)

δA,B
p (PR) := δp(PR) +KAB ≈ τ̃AB −

dAB

c
+ r̂B/A

c , (4.7)

where KAB = KA+KB

2 is an unknown constant depending on the pair (A,B) of transceivers.
The assumption of approximately equal RxP at A and B during the SSTWR transaction is
reasonable as long as we use omnidirectional antennas and the same transmitted power at A
and B.

To estimate δp (up to a constant) based on (4.7), we can move a receiver A to different lo-
cations in an environment equipped with a precise external localization system, while main-
taining LOS with a transmitter B at a fixed location. The goal is to sample sufficiently
many values of RxP, covering the range of power values expected in subsequent deployment.
At each position of A, the two transceivers perform multiple SSTWR transactions and we
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record all the quantities on the right-hand side of (4.7), including the distance dAB mea-
sured by external localization. This provides bias measurements δ̃p for the left-hand side
of (4.7). We also collect RxP values P̃R in each transaction, by reading the FPP recorded
at the transceivers. FPP values P̃f are recorded in dB but we found the logarithmic scale
inconvenient to fit δp, so we perform a simple transformation and fit the function δp with
P̃R = 10(P̃f −αdB)/10 for some normalization parameter αdB (αdB = −82 dB in our experi-
ments). Since P̃A

R ≈ P̃B
R is only approximately true in general during a TWR transaction,

we record the average RxP P̃R = (P̃A
R + P̃B

R )/2.

The resulting calibration dataset contains a large number of pairs (P̃R, δ̃p), one for each TWR
transaction. To fit δp (up to the constant KAB), we quantize the RxP into L values {PR,i}L

i=1

uniformly spread between the minimum and maximum values observed for P̃R. The RxP-
induced offset δp(PR,i) for a given level PR,i on the discretized grid is estimated by taking
the empirical average of the observed bias δ̃p for all corresponding RxP measurements P̃R

that are quantized to PR,i. We then store in a lookup table the L bias values {δp(PR,i)}L
i=1

and compute any other value δp(PR) by linear interpolation. Fig. 4.3 shows an example of
calibration dataset and fitted bias model.
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Figure 4.3: An example of computed calibration map and RxP/bias data taken at several
poses in the Polytechnique Montreal laboratory

For one-way ranging protocols (ToA, TDoA), the identification of the receiver dependent
constant Ki in (4.6) is generally not needed, see Section 4.6. For TWR, the constant KAB in
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(4.7) for a given pair of transceivers can be obtained by a short initialization phase, once δp

is known. For this, we separate the transceivers by a known distance and let them perform
a few SSTWR transactions. We then correct the ToF measurement for δp(PR) and r̂B/A

c , so
that the remaining systematic bias in the measurements can be used to estimate KAB from
(4.7).

4.4.3 Experimental Validation

Figure 4.4: Left: Robot used for our experiments. Right: Sampled positions of the tag
around the anchor

To validate the modeling assumptions and methodology presented in the previous section, in
particular (4.7), we performed experiments at two different laboratories, in Montreal, Canada
and Toulouse, France. FPP and RxP-induced bias measurements (P̃R, δ̃p) were obtained
through SSTWR transactions with clock skew correction as described above, in multiple
experiments with a fixed UWB transceiver B (anchor) and a mobile one A (tag) carried by
an omnidirectional ground robot, see Fig. 4.4. Each laboratory is equipped with a motion
capture system, providing the required distance measurements dAB with mm-level accuracy.

The mobile node moved to different locations in the environment as illustrated on Fig. 4.4 and
performed at each location a full rotation to sample 8 different headings θ = kπ/4, k ∈ [0, 7].
The robot stops for 0.5 s at each pose to perform SSTWR with a refresh rate of 100 Hz.
Therefore, we obtain about 50 measurements in each pose. Overall, this allows us to observe a
sufficiently diverse set of RxP values. The data is recorded by an onboard computer running
ROS and the function δp is fitted in a post-processing step after the complete dataset is
collected. The results shown on Fig. 4.3 were obtained during one such experiment in
Montreal.
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Figure 4.5: Calibration maps for various pairs of modules (acquired at the ISAE laboratory
in Toulouse)

Fig. 4.5 shows calibration curves c δA,B
p (PR) (see (4.7)) obtained by fitting the datasets of

measurements (P̃R, δ̃p) for ten different pairs (A,B) of UWB transceivers similar to the one
shown on Fig. 4.1. These experiments were carried out in Toulouse and we used L = 100
quantization levels for the RxP. We observe that the curves indeed have a similar profile and
mainly differ by their offset, i.e., they satisfy the model anticipated in (4.7). We noticed that
the offset KAB appears to be constant over time. We also plotted on Fig. 4.5 the calibration
curve averaged over the previous 10 pairs of transceivers. This curve can serve as function δp

to calibrate new pairs (A′, B′) of similar transceivers performing TWR transactions, which
only requires estimating the offset KA′B′ , as explained at the end of Section 4.4.2.

Figs 4.3 and 4.5 show that the calibration curves acquired in Toulouse and Montreal have
a similar shape. This indicates that the estimated function δAB

p (P̃R) can be used to remove
RxP-induced bias in LOS conditions in different environments. Indeed, the localization
experiment presented in Section 4.5 has been repeated with calibration curves obtained in
the other laboratory, which still provide a significant bias reduction. The main differences in
the two sets of curves are observable at low RxP (P̃R < 0.4), where some environments more
sensitive to multipath outliers degrade the accuracy of the calibration curves, and close to
saturation (P̃R > 1.2). The latter differences could be explained by the fact that we used two
different versions of the UWB modules (DWM1000) at the two locations, which may differ
in their amplifier circuits and antennas.



43

4.5 TWR Localization Experiment

To evaluate the usefulness of performing a correction for clock skew and RxP-induced error,
we carried out a localization experiment in 2D with a mobile UWB tag (playing the role of
transceiver A in Fig. 4.2) performing SSTWR with two fixed UWB anchors B1 and B2 at
known locations, see Fig. 4.6.
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Figure 4.6: Executed trajectory for the TWR localization test

The block diagram of the ranging algorithm implemented at the tag is shown on Fig. 4.7.
The inputs of this algorithm are the measured timestamps T̃ := {tAT1 , t

Bi
R1 , t

Bi
T2 , t

A
R2}, the clock

skew measurements γ̃ and RxP P̃R (derived from FPP measurements P̃f ). Note that all these
inputs are directly provided by the UWB transceivers (the anchors can send their timestamps
to the tag in their messages). The estimated range d̂AB is obtained by elementary operations:
i) time-related processing (in blue) consists of scalar elementary operations and a single state
Kalman filter (estimator r̂B/A

c ); ii) power-related processing (in purple) performs a simple
linear interpolation using a lookup table containing just 100 RxP-induced bias values. The
bias model δp used by the algorithm is the one previously estimated independently from the
dataset presented in Section 4.4.3. The initialization phase described at the end of Section
4.4.2 is performed for each pair (anchor, tag) in order to estimate the constants KAB. The
algorithm can provide corrected range estimates between the tag and anchors with an update
frequency of 100 Hz.

Fig. 4.6 shows the two anchors at coordinates B1 = [−0.48, 0.08, 1.69]⊤ and
B2 = [4.81,−0.10, 1.69]⊤ and the trajectory of the mobile tag from the initial position p(0)
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to the final position p(F ). This trajectory, measured by the motion capture system, is pro-
duced by the D-Opt motion planner presented in [Le Ny and Chauvière, 2018], which aims to
compute positions that reduce the ranging-based localization error for the robot. We denote
di the true distance between the anchor Bi and the tag, measured by the motion capture sys-
tem. The raw UWB range measurements between the tag and anchor i ∈ {1, 2} are denoted
d̃i = c τ̃ABi

, while d̂i are the corrected range estimates produced by the algorithm of Fig. 4.7.

tBi
T2 − t

Bi
R1

tAR2 − t
A
T1

δ̂A,Bi
p ()

δ̂A,Bi
p (P̃R)

−

r̂Bi/A
c

estimator

c/2
cτ̃ABi

2τ̃

c
cr̂Bi/A

c

−
+

d̂ABi

γ̃

T̃

P̃f 10P̃f −αdB

P̃R

Figure 4.7: Block diagram of the bias correction algorithm for each pair of transceivers A,Bi
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Figure 4.8: Plot of raw range errors (blue), biases estimated by our method (orange) and
biases predicted by the lookup table of [Decawave, 2018] (yellow)
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Figure 4.9: Error histograms after and before compensation (calibrated with Montreal
dataset)

Fig. 4.9 shows the histograms of error values for raw and corrected UWB range measure-
ments. The time series of these experiments, presenting raw errors and biases estimated by
the algorithm, are plotted in Fig. 4.8. The apparent offset at the beginning of the trajectory
might be due to the time it takes for the clock offset estimate r̂B/A

c to converge. Note that
large range measurement outliers, presumably due to reflected signals, where removed from
the dataset, since we focus on LoS conditions. Overall, the corrected range measurements
present a residual bias below two centimeters, while this bias was typically close to 20 cm for
the range to anchor 2 before correction. Since the residual noise after bias correction shows
a standard deviation of 3 to 5 cm, we see that it is crucial for accurate range measurements
to correct the bias error. Fig. 4.8 also provides a comparison with the bias predicted by
the lookup table of the application note [Decawave, 2018, Table 1] (our implementation sets
the PRF to 64 MHz and uses channel 2). This table attempts to correct the bias based on
the uncorrected distance estimates obtained from TWR, but it clearly fails here to track the
bias, possibly because of the significant differences in hardware.

We repeated the calibration process for the experiment presented on Fig. 4.6, which took
place in Montreal, using the mean calibration map acquired in Toulouse, plotted on Fig. 4.5.
The accuracy of the bias correction, illustrated in Fig. 4.10, slightly deteriorated compared
to that of Fig. 4.9, but the average ranging error remained below 3 cm for both anchors.
Finally, in a video accompanying this article, we illustrate the calibration process and the
validation on the previously presented trajectory with dynamic plots.
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Figure 4.10: Error histograms after and before compensation (calibrated with Toulouse
dataset)

4.6 Application to Other Localization Schemes

In this section, we briefly discuss how the ToF model (4.2) with RxP-induced bias model
(4.6) is useful to correct errors in different RF-based localization schemes, such as ToA and
TDoA [Groves, 2013]. Both ToA and TDoA systems require multiple synchronized UWB
anchors A1, . . . , AM placed at known locations pAi

and broadcasting localization messages,
while any number of UWB-equipped tags can determine their location by listening to these
messages.

Consider a tag B receiving a message from anchor Ai. For ToA, we can write from (4.2) and
(4.6)

ρi := c(tBRi
− tAi

Ti
) (4.8)

≈ dAiB + c∆B/A
c + cδB

p (PB
R,i)

≈ dAiB +D + cδp(PB
R,i),

where D = ∆B/A
c + KB is independent of the index i of anchor Ai because the anchors are

synchronized (and we neglect here the time variation of the clock offset ∆B/A
c ) and KB only

depends on the receiver B. To determine its position, the tag records the M pseudo-range
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measurements ρi and corresponding FPP values PR,i to solve the least-squares problem

min
p,D

M∑
i=1

∣∣∣ρi − ∥p− pAi
∥ − cδp(PB

R,i)−D
∣∣∣2 . (4.9)

A well-posed problem requires at least M = d + 1 anchors for localization in d dimensions.
A minimizer (p, D) of (4.9) produces an estimate pB of the position of B and an estimate of
the constant D, which is discarded. Hence, we see that the constant KB does not need to be
calibrated separately, the knowledge of the function δp is enough to correct the RxP-induced
error in ToA.

Similarly, for TDoA, a tag B receiving messages from two anchors Ai and Aj computes the
double difference

∆ij := c(tBRi
− tAi

Ti
)− c(tBRj

− tAj

Tj
)

≈ dAiB − dAjB + c(δp(PB
R,i)− δp(PB

R,j)).

The clock offsets cancel out because the anchors are synchronized (and we neglect the offset
time variations). So does the constant KB, which does not depend on the anchor. To
determine its position, tag B records the ∆ij for all pairs of anchors, as well as the FPP PB

R,i

for all messages. It then solves the least-squares problem

min
p

∑
i ̸=j

∣∣∣∣∆ij − ∥p− pAi
∥+ ∥p− pAj

∥

− cδp(PB
R,i) + cδp(PB

R,j)
∣∣∣∣2. (4.10)

Again, correction of RxP-induced errors for TDoA depends only on identifying the function
δp and not the constant KB.

4.7 Conclusion

We developed an empirical bias model for UWB ToF measurements in LoS conditions. The
input variable of the model is the received power (RxP), which can be measured directly by
UWB receivers from the channel impulse response. We proposed a methodology based on a
TWR protocol to calibrate the RxP-induced bias model, which leverages relative clock skew
measurements available on current receivers to first correct residual clock offsets. We verified
empirically that the identified bias model is relatively robust to changing environmental
conditions and that it can be used to significantly improve localization accuracy in practice.
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An important advantage of the bias correction method is that it does not require external
measurements nor a complex model that depends on estimating the robot or environment
parameters. If more is known about those parameters, additional corrections could be applied
as a second step, for example to identify NLoS measurements. Future work will apply the
bias correction method to other localization protocols and consider more complex signal
propagation scenarios.
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Abstract

In robotic networks relying on noisy range measurements between agents for cooperative
localization, the achievable positioning accuracy strongly depends on the network geometry.
This motivates the problem of planning robot trajectories in such multi-robot systems in a
way that maintains high localization accuracy. We present potential-based planning methods,
where localizability potentials are introduced to characterize the quality of the network ge-
ometry for cooperative position estimation. These potentials are based on Cramér Rao Lower
Bounds (CRLB) and provide a theoretical lower bound on the error covariance achievable by
any unbiased position estimator. In the process, we establish connections between CRLBs
and the theory of graph rigidity, which has been previously used to plan the motion of robotic
networks. We develop decentralized deployment algorithms appropriate for large networks,
and we use equality-constrained CRLBs to extend the concept of localizability to scenarios
where additional information about the relative positions of the ranging sensors is known.
We illustrate the resulting robot deployment methodology through simulated examples and
an experiment.

5.1 Introduction

Mobile robots require accurate, computationally efficient and low power localization systems
to navigate their environment and perform their assigned tasks. Positioning can rely on
various technologies, e.g., wheel odometry, computer vision or long- and short-range radio
frequency (RF) systems, each with distinct advantages and drawbacks, depending on the
environment and requirements. For example, the most common methods of terrestrial lo-
calization rely on RF signals from Global Navigation Satellite Systems (GNSS) to achieve
meter- to centimeter-level accuracy, but these systems do not operate indoors or when the
line of sight to the satellites is obstructed, and are sensitive to interference.
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Multiple robots can collaborate to improve the accuracy and coverage of their individual
localization solution [Sheu et al., 2010,Prorok et al., 2012a]. In particular, they can leverage
information about their proximity to other location-aware nodes [Sheu et al., 2010] or use rel-
ative position [Prorok et al., 2012a], bearing [Xu et al., 2008] or distance measurements [Wei
et al., 2015,Carlino et al., 2019] between them to estimate their individual positions in a com-
mon reference frame. Relative bearing measurements can be provided by monocular cameras
for example, range measurements by short-range RF systems, and relative position measure-
ments by LiDARs or stereo cameras. In this paper, we focus on collaborative localization in
Multi-Robot Systems (MRS) using only range measurements. This is motivated by the fact
that accurate distance measurements can be deduced from Time-of-Flight (ToF) measure-
ments obtained from inexpensive short-range RF communication systems, e.g., Ultra-Wide
Band (UWB) transceivers [Sahinoglu et al., 2008, Mueller et al., 2015, Cano et al., 2019].
In particular, such systems associate distance measurements unambiguously with pairs of
robots, simply by having the robots broadcast their IDs.

Once the robots have measured their relative distances, many algorithms exist to compute
from these measurements an estimate of the robot positions, see, e.g., [Buehrer et al., 2018]
for a recent survey. These algorithms can be centralized or decentralized, applicable to
static or mobile networks, appropriate or not for real-time localization, etc. Two major
factors determine the ability of these algorithms to solve the position estimation problem
and their accuracy. First, enough relative distance measurements should be available, which
links the feasibility of the location estimation problem to the concept of rigidity [Tay and
Whiteley, 1985, Cao et al., 2020, Aspnes et al., 2006] of the ranging graph corresponding
to these measurements. Second, satisfying the graph-theoretic condition of rigidity is still
insufficient to guarantee accurate localization of the individual agents, when measurement
noise is inevitably present. For example, a group of robots that are almost aligned can
form a rigid formation if enough range measurements are available, but can only achieve
poor localization accuracy in practice. Indeed, the spatial geometry of the network strongly
influences the accuracy of position estimates in the presence of measurement noise [Patwari
et al., 2005], a phenomenon known as Dilution of Precision (DOP) in the navigation literature
[Groves, 2013, Chap. 7]. We call here localizability the ability to accurately estimate the
positions of the individual robots of an MRS in a given geometric configuration, using relative
measurements.

In contrast to static sensor networks or GNSS, an MRS can actively adjust its geometry, e.g.,
some of the robot positions and orientations, in order to improve its overall localizability.
This results in a coupling between the motion planning and localization problem for the
group. Maintaining the rigidity of the ranging graph during the motion of an MRS is a
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stronger condition than maintaining its connectivity, but similar techniques can be used to
address both problems. In particular, we can capture the degree of connectivity or rigidity of
the graph using a function of the first non-zero eigenvalue of a type of Laplacian matrix, and
guide the MRS along paths or configure its nodes in ways that increase this function. This
is the approach adopted for example in [Kim and Mesbahi, 2006, Michael et al., 2009, Yang
et al., 2010] for improving connectivity and in [Shames et al., 2009,Zelazo et al., 2012,Zelazo
et al., 2015, Sun et al., 2015] for improving rigidity. This article builds on this principle
to optimize localizability. Following an approach that we initially proposed in [Le Ny and
Chauvière, 2018, Cano and Le Ny, 2021], we leverage Cramér Rao Lower Bounds (CRLBs)
[Haug, 2012, Chap. 14] to construct localizability potentials, which can then be used as
artificial potentials [Choset et al., 2005] to drive the motion of an MRS toward geometric
configurations promoting good localization.

The CRLB provides a lower bound on the covariance of any unbiased position estimate
constructed from the relative range measurements available in the robot network. Tighter
covariance lower bounds exist, such as Barankin bounds [McAulay and Hofstetter, 1971], but
an advantage of the CRLB is that it is relatively easy to compute and admits a closed-form
expression for the problem considered here, assuming Gaussian noise [Patwari et al., 2005].
Moreover, as we show in Section 5.4, the CRLB for Gaussian noise is in fact closely related
to the so-called rigidity matrix of the ranging graph. This does not come as a surprise, since
the Gaussian CRLB is known to correspond to DOP expressions for least-squares estimators,
which are implicitly derived in [Shames et al., 2009] for example and also linked to the
rigidity matrix. The CRLB only provides a lower bound on estimation performance and
there is generally no guarantee that a position estimator actually achieves it. Nonetheless,
using this bound as a proxy to optimize sensor placement is a well accepted approach [Uciński,
2004]. An important advantage of this approach is that the motion planning strategy becomes
independent of the choice of position estimator implemented in the network.

Contributions: First, this paper formulates a novel motion planning problem allowing an
MRS to optimize its localizability, by minimizing appropriate cost functions based on the
Fisher Information Matrix (FIM) appearing in the CRLB. Second, we establish an explicit
connection between localizability and the weighted rigidity matrices introduced in [Zelazo
et al., 2015, Sun et al., 2015]. One of the benefits of establishing this connection is to see
that various artificial potentials can be constructed from the FIM to capture localizability,
as discussed in the literature on optimal experimental design [Pukelsheim, 2006] or optimal
sensing with mobile robots, see, e.g., [Uciński, 2004,Le Ny and Pappas, 2009,Carrillo et al.,
2012]. Some of these functions may be more conveniently optimized than the smallest nonzero
eigenvalue, which is the standard potential used for connectivity and rigidity maintenance.
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Third, by leveraging the structure of the FIM matrix, we propose new distributed algorithms
enabling the deployment of groups of robots carrying ranging sensors in a scalable and robust
manner. Fourth, we extend the results to robots carrying multiple ranging sensors, using
the theory of constrained CRLBs [Gorman and Hero, 1990] to account for the presence of
additional rigidity constraints. This can be viewed as an alternative and simpler approach
to deriving intrinsic CRLBs on the manifold of rigid motions [Bonnabel and Barrau, 2015,
Chirikjian, 2018].

The structure of the paper is as follows. First, we define the deployment problem in Section
5.2, including localizability potentials further discussed in Section 5.3. Then, we derive in
Section 5.4 the closed-form expression for the FIM and analyze its structure, which allows
us to introduce in Section 5.5 decentralized methods to estimate the gradients of the local-
izability potentials. Section 5.6 extends the analysis to the case of robots carrying multiple
ranging sensors. The deployment algorithms are validated in two simulated scenarios in Sec-
tion 5.7, and experimental results using RF range measurements from UWB transceivers are
described in Section 5.8.

This article builds on the conference paper [Le Ny and Chauvière, 2018], which introduced
the concept of localizability potentials for the deployment of MRS in two dimensions. Here
we extend the methodology to three dimensions, introduce new distributed optimization
schemes, discuss useful properties on the FIM and make a clearer connection with rigidity
theory. We also generalize the conference paper [Cano and Le Ny, 2021], which considered
robots carrying multiple sensors, by developing the results in three dimensions and integrating
the full relative position information in the CRLB rather than just relative distances, which
is significantly more challenging. We demonstrate in simulation the improvement achievable
with this extension.

Notation: We write vectors and matrices with a bold font. The all-one vector of size p
is denoted 1p. The notation x = col(x1, . . . ,xn) means that the vectors or matrices xi are
stacked on top of each other, and diag(A1, . . . ,Ak) denotes a block diagonal matrix with
the matrices Ai on the diagonal. The nullspace of a matrix A is denoted ker A. For A
and B symmetric matrices of the same dimensions, A ⪰ B means that A − B is positive
semidefinite and A ≻ B that it is positive definite. If A is a symmetric matrix, λmin(A) and
λmax(A) denote its minimum and maximum eigenvalues. The time derivative of a vector-
valued function t 7→ x(t) is denoted ẋ. The expectation of a random vector x is denoted E[x]
and its covariance matrix cov[x] = E

[
(x− E [x]) (x− E [x])⊤

]
. For a differentiable function

f : Rp → Rq, ∂f(p)
∂p represents the q × p Jacobian matrix of f , with components ∂fi(p)/∂pj

for 1 ≤ i ≤ q, 1 ≤ j ≤ p. When q = 1, ∂2f(p)/∂p∂p⊤ denotes the Hessian, i.e., the square
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matrix with components ∂2f(p)/∂pi∂pj. Finally, 1e is equal to 1 if the logical expression e
is true and 0 otherwise, and for a set S we also use the alternative notation 1S(i) := 1i∈S .

5.2 Problem Statement

Consider a set of N nodes in the n-dimensional Euclidean space, where n = 2 or n = 3.
We fix a global reference frame denoted F = (O, x⃗, y⃗, z⃗) if n = 3 or F = (O, x⃗, y⃗) if n = 2.
For 1 ≤ i ≤ N , we write the coordinates of node i in that frame pi := [xi, yi, zi]⊤ if n = 3
or pi := [xi, yi]⊤ if n = 2, and we let p := col(p1, . . . ,pN) ∈ RnN denote the global spatial
configuration of the nodes, which can vary with time.

As illustrated on Fig. 5.1, some of these nodes are carried by mobile robots, while others
could remain at fixed locations. We suppose that the coordinates of a subset K of the nodes
are perfectly known in F, for 1 < |K| := K < N , and refer to these nodes as anchors. The
anchors could be placed at fixed locations or they could be mobile, as long as we can precisely
localize them via external means, e.g., using accurate GNSS receivers. The other nodes, also
mobile or fixed and whose positions are unknown and need to be estimated, are called tags
in the following. They form a set denoted U , with |U| := U = N − K. Next, we assume
that P pairs of nodes, called ranging pairs, can measure their distance (with each such pair
containing at least one tag).

For a ranging pair of nodes (i, j), we denote dij the true distance between the nodes and
d̃ij a corresponding measurement, to which both nodes i and j have access. In the following,
we consider measurement models assuming either additive Gaussian noise

d̃ij = dij + νij, νij ∼ N (0, σ2), (5.1)

or multiplicative log-normal noise

d̃ij = dij e
µij , µij ∼ N (0, σ̄2), (5.2)

where the noise realizations νij or µij are independent for all i, j and σ2, σ̄2 ∈ R+ are given
covariances. We collect all the measured distances d̃ij at a given time in the vector d̃ =
[. . . , d̃ij, . . . ]⊤ ∈ RP . We also define an undirected graph G = (E ,V), called the ranging
graph, whose vertices V are the N nodes and with an edge in E for each ranging pair and for
each pair of anchors. In particular, the subgraph of G formed by the anchors is a complete
graph, which is consistent with the fact that the distances between anchors are implicitly
known from their coordinates. Two nodes linked by an edge in G are called neighbors and we
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Figure 5.1: Illustration of the setup in 2D with 3 mobile tags and 3 anchors, 2 of whom are
fixed. The links for the ranging pairs are shown. The ranging graph includes 3 additional
implicit links between the anchors, not shown

denote byNi the set of neighbors of i or neighborhood of i, for 1 ≤ i ≤ N . Let E = P+ K(K−1)
2

be the total number of edges in G.

A concrete implementation of the previous system is as follows. The nodes could correspond
to RF transceivers capable of measuring their distance with respect to other nodes within
their communication radius. Radiolocation protocols such as Two-Way Ranging (TWR),
Time of Arrival (ToA) or Time Difference of Arrival (TDoA) [Sahinoglu et al., 2008,Bensky,
2016] use the timestamps of messages exchanged by the transceivers to estimate the ToF of
these messages and deduce distance measurements, which can be assumed to be of the form
(5.1), at least under line-of-sight signal propagation conditions. Another ranging method
consists in measuring the strength of a received signal (RSS) to deduce the distance to the
transmitter using a path loss propagation model [Bensky, 2016]. This method typically
leads to a distance measurement model of the form (5.2), assuming again a simple radio
propagation environment [Coulson et al., 1998,Patwari et al., 2005].

We assume that the nodes implement a cooperative localization scheme, in order to jointly
produce an estimate p̂ of all their coordinates p in F, based on the noisy measurements d̃
and the knowledge of the anchor coordinates. As we explain in Section 5.3, the value of p
itself strongly influences the achievable accuracy of its estimate. Hence, we introduce in that
section some real-valued functions Jloc : RnN → R that can serve as localizability potentials,
i.e., such that a low value (resp. high value) for Jloc(p) means that the performance of an
estimator at configuration p is expected to be good (resp. bad). A localizability potential
can then serve as an artificial potential for motion planning [Choset et al., 2005], to guide or
constrain the motion of an MRS to configurations that are favorable for accurate cooperative
localization. Concretely, consider a potential function J(p) = αJ1(p) + (1 − α)Jloc(p), for
α ∈ (0, 1), where J1 may include attractive and repulsive potentials to steer robots toward



55

desired locations [Khatib, 1986] and away from obstacles [Choset et al., 2005], to maintain
network connectivity [Yang et al., 2010], to cover an area [Bullo et al., 2009], etc. One
can then generate a sequence of configurations p(0),p(1), . . . , for the MRS by following the
gradient descent scheme

pi,k+1 = pi,k − γk

(
∂J(pk)
∂pi

)⊤

, (5.3)

for each mobile node i, with {γk}k≥0 a sequence of appropriate stepsizes. The presence of
Jloc in the overall potential favours configurations that have higher localizability, and this
effect becomes more pronounced as α increases. Alternatively, one can also minimize J1

subject to a constraint on the maximum tolerable value of Jloc. Note however that as in most
cases where artificial potentials are used to plan the motion of an MRS, the gradient descent
scheme (5.3) typically only leads to locally optimal configurations.

A key issue when relying on artificial potentials to provide goal configurations to an MRS is
to ensure that each mobile node i can compute the gradient (∂Jloc(p(k))/∂pi)⊤ with respect
to its coordinates in (5.3) by exchanging information only with its immediate neighbors in the
communication network, which we assume here to coincide with the ranging graph (although
in general the anchors will not need to communicate with each other). This ensures scalability
to large networks and improves the robustness of the network against the loss of nodes. The
design of distributed gradient descent schemes for the localizability potentials is discussed in
Section 5.5.

In summary, the problem considered in this paper is to first define appropriate functions that
can serve as localizability potentials and then design distributed gradient descent algorithms
for these potentials in order to deploy an MRS with ranging sensors while ensuring that its
cooperative localization scheme remains precise. In addition, we show in Section 5.6 how to
adapt the definition of the localizability potentials and the gradient descent scheme to a more
complex situation where multiple tags can be carried by the same robot. This introduces
additional constraints on the positions p, which should be taken into account by localization
and motion planning algorithms. These constraints can be used in practice to provide more
accurate full pose estimates for the robots.

Remark 5.1. In practice, the tags have access to their position p only through their estimates
p̂. As a result, when using artificial potentials for motion planning, the gradient descent
scheme (5.3) cannot be directly implemented, and the standard approach is to compute and
follow the gradient at the current estimate, i.e., use ∂J(p̂k)/∂pi in (5.3). Since including
a localizability potential aims to improve the accuracy of the position estimates along the
robots’ paths, it contributes to making this approximation of ignoring position uncertainty
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less problematic. Alternatively, (5.3) can also be used to compute a sequence of steps, i.e.,
plan a future trajectory for the MRS, in which case we assume at the planning stage that
the agents will be able to track that trajectory perfectly. Moreover, we empirically study the
behavior of the scheme (5.3) with gradients evaluated at the imperfect position estimates,
both in simulations in Section 5.7 and through experiments in Section 5.8. In particular, our
experiment confirms the intuitive fact that enhancing the localizability is important to ensure
that the robots are able to reliably follow their desired trajectories.

Remark 5.2. In general, the ranging graph G could change over time as nodes move in
their environment. In this case, the algorithms presented later could still be implemented
at each period over the current ranging graph, but localizability could become poor if critical
ranging pairs become disconnected. To address this issue, ranging between specific pairs can
be maintained by adding connectivity potentials to the function J1 above. Alternatively, when
we use the model (5.2) or alternative models where the variance degrades with distance [Cano
et al., 2022c], then Jloc increases when the links become longer, a consequence of the result
(5.5) stated in the next section. Hence, in a manner similar to the use weighted graph models
for connectivity [Kim and Mesbahi, 2006] and rigidity [Zelazo et al., 2015], maintaining
ranging distance between nodes can be promoted directly through the localizability potential.

5.3 Localizability Potentials

This section is concerned with defining artificial potentials that can be used as localizability
potentials. The proposed definitions require that we first recall some notions from estimation
theory related to the CRLB.

5.3.1 Constrained Cramér-Rao Lower Bound

We assume that the position estimator implemented by the MRS is unbiased, i.e., satisfies
E[p̂] = p. We then focus on finding configurations p for which the error covariance matrix
E
[
(p̂− p)(p̂− p)⊤

]
for p̂, which is then also the covariance matrix cov[p̂], is “small” in

some sense. More precisely, since the error covariance depends on the specific estimator
used and can be difficult to predict analytically, we use the CRLB, a lower bound on the
covariance of any unbiased estimator, to quantify the quality of a configuration p. Although
this implicitly assumes that an estimator can be constructed to achieve or approach this
lower bound, this methodology is commonly used in optimal experiment design and sensor
placement [Pukelsheim, 2006,Uciński, 2004]. In general, the CRLB corresponds to the inverse
of the Fisher Information Matrix (FIM), which we define below.
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Definition 5.1 (FIM). Let x ∈ Rp be a deterministic parameter vector and y ∈ Rq a random
observation vector, for some positive integers p, q. Define f : Rq × Rp → R+ the Probability
Density Function (PDF) of y, which depends on the parameter x, so that we write f(y; x).
Under some regularity assumptions on f (see [Haug, 2012, Chap. 14]), the p× p Fisher
Information Matrix (FIM) of this PDF is defined as

F(x) = −Ey

[
∂2 ln f(y; x)
∂x∂x⊤

]
. (5.4)

The matrix F(x) is symmetric and positive semi-definite.

In the position estimation problem, the parameters of interest are the node coordinates in
the vector p ∈ RnN , whereas the random observations are contained in the vector d̃. As
computed in [Patwari et al., 2005], the FIM of the PDF f(d̃; p) is an nN × nN matrix that
depends on p and can be decomposed into n× n blocks Fij such that

Fij(p) = Fij(pij) = − 1
d2κ

ij σ
2 pijp⊤

ij 1Ni
(j), if i ̸= j,

Fii(p) = −
∑
j ̸=i

Fij,
(5.5)

where pij := pi − pj, and κ = 1 for the additive noise model (5.1) or κ = 2 for the
multiplicative noise model (5.2). The result (5.5) can be obtained using the Slepian-Bangs
formula [Kay, 1993, Section 3.9] or by direct calculation.

Note however that estimating the anchor positions is not needed, since the locations of these
nodes are known. The fact that p̂i := pi for all i ∈ K, with pi known, should be taken into
account by an estimator of the tag positions, and hence should also be taken into account
when bounding the covariance of these estimators. We can rely on the theory of CRLBs with
equality constraints on the estimated parameters in order to include these trivial constraints
on the anchor positions and later in Section 5.6 also additional rigid constraints on the tag
positions.

Theorem 5.1 (Equality constrained CRLB [Gorman and Hero, 1990]). Let x ∈ Rp be a
deterministic parameter vector and y ∈ Rq a random observation vector, for some positive
integers p, q. Let h : Rp → Rc, for c ≤ p, be a differentiable function such that h(x) = 0. Let
x̂ be an unbiased estimate of x also satisfying h(x̂) = 0 and with finite covariance matrix.
Define Fc := A⊤FA, the constrained Fisher Information Matrix, where A is any matrix
whose columns span ker ∂h

∂x , and F is the FIM defined in (5.4).
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Then, the following inequality holds

cov[x̂] ⪰ A (Fc)† A⊤ =: Bc (5.6)

where † denotes the Moore-Penrose pseudo-inverse [Petersen and Pedersen, 2012, p. 21].

Consider now the problem of estimating the vector of tag coordinates pU ∈ RnU based on
the distance measurements d̃ and knowledge of the anchor coordinates pK ∈ RnK . Order the
nodes so that p = col(pU ,pK), and partition the FIM defined in (5.5) accordingly as

F =
 FU FUK

F⊤
UK FK

 , (5.7)

with in particular FU a symmetric positive semi-definite matrix of size nU × nU . We then
have the following result.

Proposition 5.1. Let p̂U be an unbiased estimate of the tag positions pU , based on the
measurements d̃ and the knowledge of the anchor positions pK. Then

cov[p̂U ] ⪰ F†
U(p). (5.8)

Proof. This result is a corollary of Proposition 5.5 stated below, with fc ≡ 0 in (5.28) and so
AU = InU .

5.3.2 Localizability Potentials and Optimal Design

Given (5.8), the following functions are possible candidates to define potential functions that
penalize configurations of the ranging network leading to poor localizability

JA(p) = Tr
{
F−1

U (p)
}

(A-Optimal Design), (5.9)

JD(p) = − ln det{FU(p)} (D-Optimal Design), (5.10)

JE(p) = −λmin{FU(p)} (E-Optimal Design), (5.11)

assuming in the first two cases that FU(p) is invertible. In the following, we refer to the
functions JA, JD and JE as the A-Opt, D-Opt and E-Opt potentials respectively, using
standard terminology from optimal experiment design [Pukelsheim, 2006].

In each case, configurations p for which J(p) takes large values correspond to geometries for
which the error covariance matrix of an unbiased position estimator will necessarily be “large”
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in a sense defined by the choice of potential. Hence, for (5.9), we have from (5.8) that JA(p)
is a lower bound on Tr {cov[p̂U ]}, which represents the total mean-squared error (MSE) of
the unbiased estimator p̂U . Similarly, (5.10) corresponds to a lower bound on ln det(cov[p̂U ]),
which would be equal (up to a constant) to the statistical entropy of p̂U , if this estimate were
to follow a normal distribution. Finally, still assuming FU ≻ 0, minimizing JE in (5.11) aims
to minimize the maximum eigenvalue of F−1

U (equal to 1/λmin(FU)), which is a lower bound
on the maximum eigenvalue or induced 2-norm of cov[p̂U ]. Potentials like JE are often used
to maintain the connectivity [Kim and Mesbahi, 2006,Yang et al., 2010,Michael et al., 2009]
or rigidity [Zelazo et al., 2015,Sun et al., 2015] of an MRS, which are closely related problems.

Once a potential has been chosen, it can be used to move the nodes to configurations of low
potential values, where the localization accuracy is expected to be high. This can be done
for example by descending the gradient of the potential, as discussed in Sections 5.5 and 5.6.

Remark 5.3. Another a priori possible potential is

JT (p) = −Tr {FU(p)} .

Configurations p that minimize this potential are called T-optimal designs [Pukelsheim, 2006].
However, in our case we can compute

JT (p) = −α
∑

{i,j}∈E
d2−2κ

ij ,

with α a positive constant. In the case of additive Gaussian noise (5.1), κ = 1 and JT is
constant, so that it cannot be used to optimize p. In the case of multiplicative noise (5.2), we
have κ = 2 so JT (p) = −α∑{i,j}∈E d

−2
ij becomes a simple attractive potential. In this case,

JT cannot be used alone as a potential, since its global minimum is trivially achieved when
all agents occupy the same position. In view of these remarks, JT is not considered further
in the following.

5.4 Properties of the Fisher Information Matrix

In this section, we study certain algebraic properties of the FIM that are useful for the design
of algorithms in the next sections. In particular, we establish connections between the FIM
and rigidity theory.
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5.4.1 Infinitesimal Rigidity

For the ranging graph G = (E ,V), the incidence matrix H ∈ ZE×N is defined by first assigning
an arbitrary direction i→ j to each edge {i, j} of E , and then setting each element as follows:

for {i, j} ∈ E , k ∈ V , Hi→j,k =


1 if k = i,

−1 if k = j,

0 otherwise.

We use throughout the paper the lexicographic ordering to order the edges i→ j and hence
the rows of H. As a result, the rows of H corresponding to pairs of tags (in U × U) appear
first, followed by pairs in U × K and finally by pairs of anchors, in K ×K.

Remark 5.4. Some references define H as an N ×E matrix, transposing the E×N matrix
above. Our choice of convention is motivated by the fact that it makes the connection to the
rigidity matrix and the FIM clearer below.

Given a ranging graph G, a framework is a pair (G,p), where the vector p ∈ RnN contains
the positions of all agents. The rigidity function r : RnN → RE of a framework (G,p) is
defined componentwise by

[r(G,p)]i→j = 1
2∥pij∥2, ∀{i, j} ∈ E , (5.12)

and its rigidity matrix R(G,p) ∈ RE×nN is the Jacobian ∂r/∂p of the rigidity function [Tay
and Whiteley, 1985,Zelazo et al., 2015], which can be written explicitly as

R(G,p) = diag(. . . ,p⊤
ij, . . . ) [H⊗ In]. (5.13)

In other words, the row i→ j of R(G,p) is

[
0 . . . 0 p⊤

ij 0 . . . 0 −p⊤
ij 0 . . . 0

]
with p⊤

ij occupying the ith block of n coordinates and −p⊤
ij the jth block. Next, when the

node positions vary with time, consider motions that do not change the distances between
nodes in ranging pairs, in other words, motions that keep the rigidity function constant.
These motions must then satisfy

dr(G,p)
dt

= R(G,p)dp
dt

= 0,
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i.e., the corresponding velocity vectors dp/dtmust lie in the kernel of R(G,p). This constraint
is rewritten more explicitly in the following definition.

Definition 5.2 (Infinitesimal motion of a framework). An infinitesimal motion of a frame-
work (G,p) is any vector v = col(v1, . . . ,vN) in RnN , such that v ∈ ker R(G,p). Equiva-
lently, for each edge {i, j} ∈ E, we have p⊤

ij(vi − vj) = 0.

Any framework admits a basic set of infinitesimal motions, namely, the Euclidean infinitesimal
motions of the framework [Tay and Whiteley, 1985,Whiteley, 1996], which can be defined for
n = 3 as

Eucl3p =
{
col(v + ω × p1, . . . ,v + ω × pN) |v,ω ∈ R3

}
,

and for n = 2, with the notation pi = [xi, yi]⊤,

Eucl2p =
{

col
v + ω

 y1

−x1

 , . . . ,v + ω

 yN

−xN

 ∣∣∣∣
v ∈ R2, ω ∈ R

}
.

These infinitesimal motions correspond to the global rigid translations and rotations of the
whole framework, and it is immediate to verify that the subspace Euclp is always contained
in ker R(G,p). Infinitesimally rigid frameworks do not admit other infinitesimal motions,
which would correspond to internal deformations.

Definition 5.3 (Infinitesimal rigidity). A framework (G,p) in RnN is called infinitesimally
rigid if all its infinitesimal motions are Euclidean, i.e., if ker R(G,p) = Euclnp.

The following result provides a basis of Euclnp and is used in Section 5.6. When n = 3,
with ex, ey, ez the standard unit vectors in R3, define vTξ

= 1N ⊗ eξ as well as vRξ
=

col(eξ × p1, . . . , eξ × pN), for ξ ∈ {x, y, z}. Similarly, if n = 2 and ex, ey are the standard
unit vectors in R2, define vTx = 1N ⊗ ex, vTy = 1N ⊗ ey and

vRz = col
−y1

x1

 , . . . ,
−yN

xN

 .
Proposition 5.2. Suppose that N ≥ n. If n = 2 and at least 2 nodes are at distinct locations,
the dimension of Eucl2p is 3 and a basis of this subspace is given by (vTx ,vTy ,vRz). If n = 3
and we have at least 3 nodes that are not aligned, the dimension of Eucl3p is 6 and a basis of
this subspace is given by (vTx ,vTy ,vTz ,vRx ,vRy ,vRz).
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Proof. We provide a proof for n = 3, the case n = 2 is similar. The fact that the vectors in the
proposition span Eucl3p is clear by definition, so it is sufficient to prove their independence.
Consider a linear combination equal to zero

α1vTx + α2vTy + α3vTz + α4vRx + α5vRy + α6vRz

= col(v + ω × p1, . . . ,v + ω × pn) = 0,

where v = [α1, α2, α3]⊤ and ω = [α4, α5, α6]⊤. Suppose that the nodes indexed by i, j and k
are not aligned. We have from the equation above v = −ω × pi, and so

ω × (pj − pi) = ω × (pk − pi) = 0.

Since (pj − pi) and (pk − pi) are by assumption independent, this gives ω = 0 and hence
v = 0. This proves the independence of the vectors in the proposition, which therefore form
a basis of Eucl3p.

5.4.2 Relations between the Rigidity Matrix and the FIM

Throughout this section, we consider the set of nodes (tags and anchors) to be at positions
p, with corresponding ranging graph G. This defines a framework (G,p), as discussed in the
previous section. The FIM F is given by (5.5), whereas the rigidity matrix R := R(G,p) is
given by (5.13).

Proposition 5.3. We have F = R⊤QR, where Q = diag
(
. . . , 1/(d2κ

ij σ
2), . . .

)
∈ RE×E, and

κ ∈ {1, 2} is the parameter appearing in (5.5).

To explain this result, remark that F in (5.5) has a structure similar to the Laplacian matrix
L of the graph G [Godsil and Royle, 2001, Chapter 12]. The expression of Proposition 5.3
then corresponds to the standard relationship L = H⊤H between the incidence matrix and
the usual Laplacian matrix of an undirected graph. Hence, the FIM F can be considered
as a weighted Laplacian matrix, noting the relation (5.13) between H and R. In [Zelazo
et al., 2015], matrices of the form R⊤QR, for any diagonal matrix Q, are called (weighted)
“symmetric rigidity matrices”. Hence, with this terminology, Proposition 5.3 says that the
FIM is a symmetric rigidity matrix, for a specific set of weights in Q determined by the
properties of the measurement noise model. In particular, these weights depend inversely on
the (true) distances between ranging nodes.
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Proof. Starting from (5.13), we have

R⊤QR = (H⊤ ⊗ In) diag
(
. . . ,

pijp⊤
ij

d2κ
ij σ

2 , . . .

)
(H⊗ In).

Hence, for i ̸= j, the block i, j of R⊤QR is

[R⊤QR]ij =
∑
e∈E

HeiHejQee = −
pijp⊤

ij

d2κ
ij σ

2 1Ni
(j) = Fij,

using the fact that HeiHej = −1 if e is i→ j and 0 otherwise. Similarly, for all i

[R⊤QR]ii =
∑
e∈E

HeiHeiQee =
∑

j∈Ni

pijp⊤
ij

d2κ
ij σ

2 = Fii.

The following result then follows immediately from the fact that Q ≻ 0 in Proposition 5.3.

Corollary 5.1. We have ker F = ker R.

The following result states that infinitesimal rigidity provides a sufficient condition for the
invertibility of the symmetric positive semi-definite matrix FU appearing in (5.7).

Theorem 5.2. Suppose that the framework (G,p) is infinitesimally rigid and contains at
least n anchors at distinct locations. Moreover, when n = 3, suppose that at least 3 of these
anchors are not aligned. Then FU is invertible.

Proof. We give the proof in the more involved case n = 3. With the assumed ordering of
nodes and edges, the rigidity matrix has the following block structure

R =
R1 R2

0 R3

 , with R1 ∈ RP ×U ,R3 ∈ R
K(K−1)

2 ×K .

In other words, the rows of the matrix R1 correspond to the edges internal to U and between
U and K, whereas R3 is the rigidity matrix of the complete subgraph formed by the anchors
and the links between them. Now, we have FU = R⊤

1 Q1R1, with Q1 diagonal and invertible,
as in Proposition 5.3, so ker FU = ker R1. Consider some vector x1 ∈ RU with x1 ∈ ker R1.
Then,

R

x1

0

 =
R1 R2

0 R3

 x1

0

 = 0, (5.14)
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hence col(x1,0) is in ker R. Since G is infinitesimally rigid, there must exist v, ω in R3 such
that x1

0

 = col(v + ω × p1, . . . ,v + ω × pN).

In particular, for the 3 anchors that are not aligned, indexed by i, j and k, we must have

v + ω × pi = v + ω × pj = v + ω × pk = 0.

From this, we conclude as in the proof of Proposition 5.2 that v = ω = 0, which in turns
implies x1 = 0. Hence ker FU = {0}, i.e., FU ≻ 0.

Remark 5.5. If we have only one tag, then one can show that FU is invertible if and only
if we have at least n anchors and the nodes’ locations span an affine space of full dimension
n (i.e., we have 3 non aligned nodes if n = 2, and 4 non coplanar nodes if n = 3). Note that
if we have only n anchors, we cannot localize uniquely the tag in general, even with perfect
measurements, because the intersection of n spheres in Rn gives two possible locations. Hence,
even when FU is invertible, the localization problem might not be uniquely solvable. Unicity of
the localization solution can be characterized by the stronger notion of global rigidity [Aspnes
et al., 2006], which however is more complex to check if n = 2 and for which no exact test is
currently known if n = 3.

Theorem 5.2 can be used to produce an initial node placement and choose ranging links to
guarantee that FU is already invertible at the start of the deployment. For this, we should
ensure that (G,p) is infinitesimally rigid. One convenient way to satisfy this condition (in
fact, the stronger condition of global rigidity) is to construct a triangulation graph [Aspnes
et al., 2006,Moore et al., 2004]: starting from a set of at least n+1 anchors, we add tags one by
one, with each new tag connected to at least n+1 previous nodes that are in general position
(3 non-aligned nodes if n = 2, 4 non-coplanar nodes if n = 3). Although this construction
requires more anchors and links than the strict minimum necessary for the invertibility of FU ,
the resulting network supports efficient distributed localization algorithms that are robust to
measurement noise [Moore et al., 2004].

5.5 Distributed Gradient Computations for the Localizability Potentials

In order to implement the gradient descent scheme (5.3), in Section 5.5.1 we provide analytical
forms for the gradients of the localizability potentials (5.9), (5.10) and (5.11). Then, in
Sections 5.5.2 and 5.5.3, we describe decentralized deployment algorithms by showing how
each agent can compute its components of the gradient of the chosen localizability potential,
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using its own local information as well as data obtained from its neighbors in the ranging
graph.

5.5.1 Partial Derivatives of the FIM

Irrespective to the potential considered, we need to evaluate the derivative of the FIM FU

in (5.7) with respect to any coordinate ξi ∈ {xi, yi, zi} of a mobile agent i (anchor or tag)
located at pi = [xi, yi, zi]⊤. We provide formulas for the case n = 3, the case n = 2 being
similar. Define the notation ξij = ξi − ξj and γij = κ

σ2d
2(κ+1)
ij

1Ni
(j). For Fij, i ̸= j, the 3 × 3

blocks introduced in (5.5), we find

∂Fij

∂xi

= γij


x3

ij −
d2

ijxij

κ
x2

ijyij −
d2

ijyij

2κ
x2

ijzij −
d2

ijzij

2κ

⋆ xijy
2
ij xijyijzij

⋆ ⋆ xijz
2
ij



∂Fij

∂yi

= γij


x2

ijyij xijy
2
ij −

d2
ijxij

2κ
xijyijzij

⋆ y3
ij −

d2
ijyij

κ
y2

ijzij −
d2

ijzij

2κ

⋆ ⋆ yijz
2
ij

 ,

∂Fij

∂zi

= γij


x2

ijzij xijyijzij xijz
2
ij −

d2
ijxij

2κ

⋆ y2
ijzij yijz

2
ij −

d2
ijyij

2κ

⋆ ⋆ z3
ij −

d2
ijzij

κ

 , (5.15)

where the symbol ⋆ replaces symmetric terms. These expressions are sufficient to compute
the whole matrix ∂FU/∂ξi, because Fji = Fij, Faa = −∑b∈Na

Fab, and ∂Fab/∂ξi = 0 if a ̸= b

and i /∈ {a, b}.

Using standard differentiation rules [Petersen and Pedersen, 2012], the partial derivatives of
the A-Opt potential (5.9) are

∂JA(p)
∂ξi

=
∂Tr

{
F−1

U

}
∂ξi

= −Tr
{

F−2
U
∂FU

∂ξi

}
. (5.16)

Similarly, we can compute the derivatives of the D-Opt potential (5.10) as

∂JD(p)
∂ξi

= −∂ ln det FU

∂ξi

= −Tr
{

F−1
U
∂FU

∂ξi

}
. (5.17)

Finally, if λmin(FU) is a non-repeated eigenvalue with associated unit norm eigenvector v, we
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can compute the derivative of the E-Opt potential (5.11) as [Harville, 1997, p. 565]

∂JE(p)
∂ξi

= −∂λmin(p)
∂ξi

= −v⊤∂FU

∂ξi

v. (5.18)

Hence, we can in principle compute the gradient of the chosen localizability potential, using
the expressions for the FIM and its derivatives. However, in practice we would also like to
be able to implement these computations in a distributed manner, in order to obtain deploy-
ment strategies that can be used by an MRS with incomplete ranging graph G, assuming
communication over this ranging graph is also possible.

5.5.2 Decentralized Gradient Computations for the D- and A-Opt Potentials

We propose now a new method to estimate in a distributed way the gradient of the D- and
A-Opt potentials at a given configuration p, which have similar expressions, see (5.16) and
(5.17). As mentioned in Remark 5.1, we assume that each node i has access to its position pi,
which could be its true position (e.g., for anchors) or an estimate obtained after executing
a localization algorithm such as the one in [Moore et al., 2004]. In the latter case, the
algorithms presented here will simply produce the gradient of Jloc at the estimated position.
In the following, we omit p from the notation, writing FU instead of FU(p). The method

essentially relies on inverting FU in a decentralized manner, which we discuss first.

Auxiliary Problem

Suppose that each tag i ∈ U knows initially a matrix Ei ∈ Rn×m, for some integer m,
and the tags need to compute F−1

U E in a distributed manner over the network G, where
E = col(E1, . . . ,EU) ∈ RnU×m. This is equivalent to solving in a decentralized manner the
linear system FUX = E, with the matrix variable X ∈ RnU×m. A special case of this problem
is to compute F−1

U , when E = InU .

Consider the following system of differential equations

Ẋ(t) = −FUX(t) + E, X(0) = X0. (5.19)

If FU ≻ 0, as guaranteed by Theorem 5.2, then −FU has strictly negative eigenvalues, i.e., is
stable, so the solution X(t) to the system (5.19) converges to the solution F−1

U E of the linear
system as t → ∞, no matter the choice of initial condition X0. A discrete-time version of
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the flow (5.19) can be implemented for l ≥ 0 as

Xl+1 = Xl − ηl (FUXl − E),

for some stepsizes ηl, which reads more explicitly for each tag 1 ≤ i ≤ U

Xi,l+1 = ηl

∑
j∈Ni∩U

Fij(Xi,l −Xj,l)

+
In + ηl

∑
j∈Ni∩K

Fij

Xi,l + ηlEi. (5.20)

Again, the iterates Xk converge to the desired solution F−1
U E if we choose for example ηl = η

constant and sufficiently small (namely, as long as η < 2/λmax(FU)). The iterations (5.20)
can be implemented in a decentralized manner by the tags, i.e., at each step l tag i only needs
to exchange its matrix Xi with its neighboring tags. This also requires that tag i knows Fij

for j ∈ Ni, which is the case if prior to the iterations, the nodes (tags and anchors) broadcast
their position (estimates) to their neighbors. When the iterations have converged, the n×m
matrix Xi at tag i represents the ith block of rows of F−1

U E, i.e., F−1
U E = col(X1, . . . ,XU).

Remark 5.6. The iterations (5.20) correspond to Richardson iterations to solve the linear
system FUX = E in a decentralized way [Bertsekas and Tsitsiklis, 2015]. Other distributed
iterative methods could be used, such as the Jacobi over-relaxation iterations

Xi,l+1 = (1− η) Xi,l + ηF−1
ii

Ei −
∑

j∈Ni∩U
FijXj,l

 ,
with potentially better convergence properties, but a detailed discussion of such alternatives,
which can be found in [Bertsekas and Tsitsiklis, 2015, Chapter 2], is outside of the scope of
this paper.

Application to compute ∂JD/∂ξi

To implement the gradient descent scheme (5.3) for D-optimization, each mobile node i (tag
or anchor) needs to compute ∂JD/∂ξi for ξi ∈ {xi, yi, zi}, which is given by (5.17). Denote
M = F−1

U ∈ RnU×nU and its n × n blocks Mij, for 1 ≤ i, j ≤ U . First, the tags run the
iterations (5.20), with the matrix E = InU . That is, tag j uses the matrix Ej = e⊤

j ⊗In, where
ej is the jth unit vector in RU . After convergence, tag j stores an approximation of the matrix
Mj = [Mj1, . . . ,MjU ] ∈ Rn×nU . A stopping condition maxi∈Nj

∥Xi,l+1−Xi,l∥/∥Xi,l∥ < ϵ can
be implemented at each node j, for a threshold ϵ > 0.
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Next, note from (5.15) that the only n× n non-zero blocks ∂Fab/∂ξi, with 0 ≤ a, b ≤ U , are
those for which: i) a = b and a ∈ Ni; ii) a = b = i; iii) a = i and b ∈ Ni; or iv) b = i and
a ∈ Ni. Moreover, if i is a mobile anchor (so i ≥ U + 1), only case i) can occur. From this
remark, we can derive the following expressions. If i ∈ U

∂JD(p)
∂ξi

=
∑

j∈Ni∩U
Tr
{

(Mjj + Mii − 2Mij)
∂Fij

∂ξi

}

+
∑

j∈Ni∩K
Tr
{

Mii
∂Fij

∂ξi

}
, (5.21)

and if i ∈ K
∂JD(p)
∂ξi

=
∑

j∈Ni∩U
Tr
{

Mjj
∂Fij

∂ξi

}
. (5.22)

Assuming that each node knows an estimate of its coordinates and of its neighbors’ coor-
dinates, node i can obtain from its neighbor tags j the terms Tr {Mjj∂Fij/∂ξi}, and also
compute the terms Tr {Mii∂Fij/∂ξi} and Tr {Mij∂Fij/∂ξi} if i ∈ U . Hence, overall this
provides a method allowing each mobile node i to compute ∂JD/∂ξi by communicating only
with its neighbors. Nevertheless, it requires significant data exchanges between the agents
(exchanges to reach the convergence in (5.20) and sending of the approximations of Mj, of
size n × nU , to the neighbors), which can limit its scalability to large MRS. Algorithm 5.1
summarizes the distributed gradient computation procedure for D-optimization.

Algorithm 5.1: D-Opt distributed gradient computation
Data: Each node i knows an estimate of its pi from a localization algorithm, or exactly

if i ∈ K
Result: Each mobile node i knows ∂JD(p)/∂pi

1 Each node i ∈ U ∪ K broadcasts pi to its neighbors;
2 The tags run the iterations (5.20) until convergence, with Ej = e⊤

j ⊗ In for tag j, and
each tag j stores the resulting matrix Mj;

3 Each mobile tag i computes ∑j∈Ni
Tr
{
(Mii − 2Mij1K(j)) ∂Fij

∂ξi

}
;

4 Each tag j computes and sends Tr
{
Mjj

∂Fij

∂ξi

}
to each of its mobile neighbors i ∈ Nj (i

tag or anchor);
5 Each mobile node i computes its gradient using (5.21) or (5.22);

The same steps can be used to compute the gradient (5.16) at each mobile node for A-
optimization. The only difference is that the matrices Mi above should represent rows of F−2

U

instead of F−1
U . For this, the tags first compute the rows M̃i of F−1

U using the iterations (5.20).
Then, we restart these iterations but now replacing the matrices Ei = e⊤

i ⊗ In by M̃i. This
computes an approximation of F−1

U F−1
U = F−2

U , as desired. However, the resulting distributed
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A-Opt scheme requires more computational resources and communication exchanges and is
thus less applicable for large MRS.

5.5.3 Decentralized Computation of E-Opt Gradient

The decentralized computation of the gradient of the E-Opt potential can be done using the
methodology developed in [Yang et al., 2010] for the standard Laplacian, also used in [Zelazo
et al., 2015] for the symmetric rigidity matrix. Hence, our presentation is brief and focuses
on adapting this methodology to FU(p).

Using the sparsity of FU , if i ∈ U , we can rewrite (5.18) as

∂JE(p)
∂ξi

=
∑

j∈Ni∩U
(vi − vj)⊤∂Fij

∂ξi

(vi − vj)⊤

+ v⊤
i

 ∑
j∈Ni∩K

∂Fij

∂ξi

vi, (5.23)

and if i ∈ K
∂JE(p)
∂ξi

=
∑

j∈Ni∩U
v⊤

j

∂Fij

∂ξi

vj, (5.24)

where v = col(v1, . . . ,vU) ∈ RnU . Computing these expressions requires a decentralized
algorithm to estimate the components of v, a unit norm eigenvector associated with λ1 :=
λmin(FU).

Power-iteration eigenvector estimator

To compute v in a decentralized manner, consider the solution t 7→ w(t) ∈ RnU to the
following differential equation, adapted from [Yang et al., 2010],

ẇ = −[βFU + µ((nU)−1∥w(t)∥2 − 1)InU ]w(t), (5.25)

with an initial condition w0 := w(0) and β, µ > 0.

Proposition 5.4. If µ > λ1β and w⊤
0 v ̸= 0, then the solution w(t) to (5.25) converges to

an eigenvector w∞ of FU , associated with λ1 and proportional to v.

Proof. This follows from the argument in the appendix of [Yang et al., 2010].

In practice, we can choose w0 randomly to fulfill the condition w⊤
0 v ̸= 0 with probability

one. To set the gains β, µ, note that Tr {FU} > λ1 since FU ≻ 0. Then, for the additive
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measurement noise model (5.1), we have Tr {FU} ≤ 2P
σ2 . So, if we choose β ≥ σ2/(2P ) and

µ > 1, the condition of Proposition 5.4 is satisfied. For the log-normal model (5.2), we have
Tr {FU} ≤ 2

σ2
∑

{i,j}∈E,i∈U d
−2
ij . Hence, if we set again β ≥ σ2/(2P ) and now µ > 1/d2

min, such
that dij ≥ dmin for all i, j, then the condition of Proposition 5.4 is satisfied. The minimum
distance dmin between robots could be enforced as part of a collision avoidance scheme.

An estimation algorithm for v is obtained by discretizing (5.25), leading to the following
iterations for each agent i ∈ U

wi,l+1 =wi,l − ηl

(
µ(sl − 1)wi,l

+ β
∑

a∈(Ni∪{i})∩U
Filwa,l

)
, (5.26)

where ηl > 0 is a sufficiently small step-size and sl := ∥wl∥2/nU . All the terms in (5.26) can
be obtained locally by node i using one-hop communication with its neighbors, except for
the global average sl, which can be computed by a consensus algorithm as described next.
The last step is to normalize w∞, obtained after convergence in (5.26). This can again be
done by each individual agent, since v := w∞/

√
nUs∞ is a unit-norm vector.

Estimation of sl via a consensus algorithm

Since sl = ∥wl∥2/(nU) = 1
U

∑U
i=1(∥wi,l∥2/n), this term can be computed by the tags using

a decentralized averaging consensus algorithm. We assume for simplicity that the graph of
the tags GU is connected. To solve the averaging problem, each tag i initializes a variable
ŝi,l,0 := ∥wi,l∥2/n. Then, they execute in a distributed manner the iterations

ŝl,m+1 = G ŝl,m,∀m ≥ 0, (5.27)

where ŝl,m = col(ŝ1,l,m, . . . , ŝU,l,m), and G is a doubly stochastic matrix of weights Gij asso-
ciated with the edges of GU (i.e., ∑U

u=1 Giu = ∑U
u=1 Gui = 1, for 1 ≤ i ≤ U , and Gij = 0 if

j /∈ Ni), for instance the Metropolis-Hastings weights
Gij = 1Ni∩U(j)(1 + max(|Ni|, |Nj|))−1,∀i ̸= j,

Gii = 1−∑U
u=1 Giu.

We then have ŝl,m → sl1U [Bullo et al., 2009, p. 58], so that each tag knows after convergence
the scalar value sl needed for (5.26).

Remark 5.7. Since sl is time varying and we need to track its value at each period l, dynamic
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consensus methods [Kia et al., 2019] may converge faster than the solution presented here.
We leave the exploration of such schemes for future work.

Algorithm 5.2 summarizes the decentralized computation of the estimate v̂i of the i-th com-
ponent of v by a given tag i ∈ U . After decentralized estimation of v by the tags, each
mobile agent i can compute its components of the gradient of JE from (5.23) or (5.24) by
communicating with its neighbors.

Algorithm 5.2: Estimation of vi by tag i ∈ U .
Data: wi,0 random, G, µ, β, niter, ñiter

1 for 0 ≤ l ≤ niter do
2 ŝi,l,0 = ∥wi,l∥2/n;
3 for 0 ≤ m ≤ ñiter do
4 ŝi,l,m+1 = Giiŝi,l,m +∑

j∈Ni∩U Gij ŝj,l,m;
5 end
6 compute wi,l+1, setting sl := ŝi,ñiter in (5.26).
7 end
8 transmit v̂i := wi,niter√

nUŝñi,iter
to the neighborhood;

Remark 5.8. When the subgraph of G with only the tags is not connected, it is still possible
to distributively compute the gradient of JE. In this case, there exists a U × U permutation
matrix P such that F̌U = (P ⊗ In)−1FU(P ⊗ In) = diag(FS1 . . .FSl

. . . ) is block diagonal,
where each Sl represents a subset of connected tags. Hence, the minimal eigenvalue λ of
FU is among the minimal eigenvalues λSl

of the blocks FSl
. Therefore, each subset Sl can

use Algorithm 5.2 to compute its eigenvector vSl
associated to λSl

:= v⊤
Sl

FSl
vSl

. On the
other hand, the graph G with all nodes is assumed rigid and hence fully connected. This
allows comparing the λSl

through the network K formed by the anchors in order to find
λ := minSl

λSl
corresponding to the subset S∗. Since F̌U is block diagonal, its eigenvector

associated with λ is col(0, . . . ,vS∗ , . . . 0), which then yields v = (P⊗ In) col(0, . . . ,vS∗ , . . . 0)
for FU . Then, v gives the gradient of JE using (5.23) and (5.24).

5.6 Localizability Optimization for Rigid Bodies

5.6.1 Constrained Localizability Optimization

In this section, we consider scenarios where mobile robots can carry several tags, see Fig.
5.2. Hence, the relative motion and position of some tags are constrained by the fact that
they are attached to the same rigid body. More generally, let fc : RnU → RC be a known
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function defining C constraints fc(pU) = 0 that the tag positions must satisfy, and define the
feasible set

C :=
{
p = col(pU ,pK) ∈ RnN

∣∣∣fc(pU) = 0
}
. (5.28)

To use the CRLB as localizability potential, the bound should now reflect the fact that
localization algorithms can leverage the information provided by the constraints to improve
their performance. We use the following result generalizing Proposition 5.1.

Proposition 5.5. Assume that the tag positions are subject to the constraints (5.28). Let
AU(pU) be a matrix whose columns span ker ∂fc/∂pU (which depends on pU in general).
Let p̂U be an unbiased estimate of the tag positions pU , based on the measurements d̃, the
knowledge of the anchor positions pK, and the knowledge of the constraints (5.28). Then

cov[p̂U ] ⪰ BU(p), (5.29)

where
BU(p) := AU [A⊤

U FUAU ]†A⊤
U . (5.30)

Proof. We have both the trivial constraint ft(pU) = pK−p∗
K = 0 with p∗

K the known positions
of the anchors, and the equality constraint fc(pU) = 0. Define h(p) = col(fc(pU), ft(pK)).
We then have :

∂h
∂p

=
 ∂fc

∂pU
0

0 InK

 .
We apply the result of Theorem 5.1, with the matrix A in (5.6)

A =
AU

0

 so Fc = A⊤
U FUAU , Bc =

AUF†
cA⊤

U 0
0 0

 .
In (5.6), the nU × nU top-left corner of the matrix inequality gives (5.29) for the covariance
of p̂U . The other parts of the bound (5.6) are trivial (0 ⪰ 0) and correspond to the fact
that a reasonable estimate p̂ = col(p̂U , p̂K) should set p̂K = pK, so that p̂K will have zero
covariance.

Note that to simplify the notation, we have omitted in (5.30) to state the dependencies
AU(pU) and FU(p). From the matrix-valued bound (5.30), we can define constrained local-
izability potentials as in Section 5.3.2. Here, for conciseness, we only consider the A-Opt
potential

Jc(p) := Tr {BU(p)} . (5.31)



73

×

×

×

×

×

θ1

×

×
×
G2

θ2

x⃗

y⃗

F

6

7

8

2

1

G1

4

5
3

Robot 1 Robot 2

Figure 5.2: Setup for two robots, seen as rigid bodies, carrying multiple tags

Moreover, the desired tag positions should also respect the constraints specified by (5.28). In
other words, we aim to adjust the positions of the mobile nodes (anchors or tags) in order to
minimize, at least locally, the overall potential J , which includes the localizability potential
Jc in (5.31), subject to the constraints (5.28). For this, we can replace the gradient-descent
method (5.3) by the following first-order primal-dual method [Bertsekas, 2016, p. 528]:

pk+1 = pk − ηk

(
∂J(pk)

∂p + λλλ⊤
k

∂fc(pU,k)
∂p

)⊤
,

λλλk+1 = λλλk + δ fc(pU ,k),
(5.32)

where ηk ∈ R is a sequence of stepsizes, δ a fixed parameter and λλλk are dual variable
iterates. The scheme (5.32) provides a sequence of configurations pk, k ≥ 0. Feasibility
of the constraints (5.28) is not maintained during the iterations (5.32), but the algorithm
contributes to keeping pk+1 close to C. In addition, for each iterate pk that we actually
want to use as waypoint for motion planning (some iterates could be skipped), since (5.28)
represents rigidity constraints, we can enforce feasibility by computing for each robot the pose
minimizing the distance between the desired and achievable tag locations, in a least-squares
sense (this corresponds to a standard pose estimation problem [Barfoot, 2017, Section 8.1]).

A local convergence result for the iterations (5.32) to a local constrained minimum p∗ and
Lagrange multiplier λ∗ is stated in [Bertsekas, 2016, Proposition 5.4.2], for constant stepsizes
ηk = δ, k ≥ 0, and δ sufficiently small. Note that this method is not guaranteed to converge
starting from any initial configuration p0. Hence, it may need to be combined with or re-
placed by other optimization methods with global convergence guarantees, such as multiplier
methods, as discussed in [Bertsekas, 2016, Section 5.2]. We refer the reader to the litera-
ture on nonlinear programming for further discussion and comparison of available iterative
methods, and focus instead in the rest of this section on the computation of the derivatives
∂Jc/∂p and ∂fc/∂p appearing in (5.32), which are required for the implementation of all such
methods. We specialize the discussion above to the deployment problem where some some
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robots carry multiple tags, which requires evaluating the cost function (5.31) and its gradi-
ent. First, we only take into account in the CRLB the constraints on the distances between
the intra-robot tags, since this leads to somewhat simpler expressions and computations. In
Section 5.6.3, we include in the CRLB the full information about the relative positions of
these tags.

5.6.2 CRLB with Distance Constraints

Considering Fig. 5.2, as robots carrying multiple tags move, their tags’ relative positions
must satisfy rigid displacement constraints. We partition the set of tags U into R groups
U1, . . .UR, with ∑R

r=1 |Ur| = U , such that the tags in group Ur are rigidly connected (mounted
on the same robot). To simplify the discussion in the following, we assume that each group
has |Ur| ≥ n tags in dimension n and that these tags are in general position (no 3 tags
aligned, and no 4 tags coplanar in dimension 3). As a result, each group of tags forms
an infinitesimally rigid framework for the complete graph (note that all pairwise distances
within a group Ur are known). For example, we can simply have 2 tags on each robot if
n = 2, or 3 non-aligned tags if n = 3. We also ignore the possibility of having known rigid
constraints between anchors and tags. The analysis can be extended to mixed networks of
robots carrying a single or multiple tags, or both anchors and tags, in a straightforward
manner.

Since we know the relative positions of the tags in Ur in the robot’s frame of reference (by
carefully placing them on the robot), this information should in principle be included in the
CRLB. First, however, we only include the information about relative distances between tags
in each group, as this leads to simpler algorithms. In this case, in the framework of Section
5.6.1, fc has one component for each pair of tags {i, j} in the same group Ur, of the form

f{i,j}
c (pU) = ||pij||2 − d2

ij,

where dij is perfectly known. If we order these components by listing all pairs of tags in the
same set U1, U2, . . . , UR, then we obtain for the Jacobian matrix

∂fc(pU)
∂pU

= diag(R1, . . . ,RR), (5.33)

where Rr is the rigidity matrix defined in Section 5.4.1, for the framework formed by a
complete graph among the tags in group Ur. Because the framework within each group is
infinitesimally rigid, the kernel of each matrix Rr is spanned by three explicitly known vectors
if n = 2, or six if n = 3, as described in Proposition 5.2. Then we can compute the matrix
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AU =
[
A1 . . . AR

]
with nU rows and 3R (if n = 2) or 6R (if n = 3) columns spanning the

kernel of (5.33). For example, based on the discussion above Proposition 5.2, if n = 2 we can
take Ar =

[
vr

Tx
vr

Ty
vr

Rz

]
, with [vr

Tx
]2i−1 = 1, [vr

Ty
]2i = 1, [vr

Rz
]2i−1 = −yi and [vr

Rz
]2i = xi

for all i ∈ Ur and zeros everywhere else. From these explicit expressions of AU , we can also
immediately compute the derivatives ∂AU/∂ξi, for ξi ∈ {xi, yi, zi}.

Since determining AU(pU) allows us to compute Jc(pU) using (5.30), the only missing element
to execute the iterations (5.32) is the gradient of Jc. For simplicity, suppose that Fc :=
A⊤

U FUAU is invertible. Since AU can be taken to be full column rank, this can be ensured
by fulfilling the assumptions of Theorem 5.2, guaranteeing that FU is invertible. Then, we
have

∂Jc

∂ξi

= ∂

∂ξi

Tr
{
AUFc

−1A⊤
U

}
(5.34)

= 2Tr
{

F−1
c A⊤

U
∂AU

∂ξi

}
− Tr

{
AUF−1

c

∂Fc

∂ξi

Fc
−1AU

⊤
}

= 2Tr
{

F−1
c A⊤

U (I−BUFU)∂AU

∂ξi

}
− Tr

{
B2

U
∂FU

∂ξi

}
.

5.6.3 CRLB with Constrained Relative Positions

When we place two tags i and j on a robot r, we can in fact know the relative positions
(RP) pr

ij of these tags in the frame of robot r, not just their distance. Since a position
estimator can leverage this information to improve its accuracy, we derive in this section the
corresponding CRLB. To simplify the presentation, we assume here that each robot carries
at least two tags.

To obtain the CRLB, let us first introduce R new parameters θ := col(θ1, . . . ,θR), one for
each robot, where θi ∈ Rq, with q = 1 if n = 2 and q = 3 if n = 3. Then, for the extended
set of parameters p̃U = (pU ,θ) and the measurements (5.1) or (5.2), we denote the extended
FIM

F̃U = −E{∂
2 ln f(d̃; p̃U)
∂p̃U∂p̃⊤

U
} =

 FU 0nU,qR

0qR,nU 0qR,qR

 . (5.35)

In the following, we add constraints between the tag positions and the parameters θ, in such
a way that the latter represent the robot orientations in exponential coordinates. Then,
we compute the constrained FIM from F̃U using Theorem 5.1 to obtain the final CRLB on
position estimates.

It is convenient to number and order the tags as follows. Consider robot r ∈ {1, . . . , R} and
associated tags Ur, using the notation of Section 5.6.2. Pick one tag in Ur, denoted in the
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following 1r. The other tags of Ur are denoted 2r, . . . , U r
r , with Ur = |Ur|. We group these

latter tags by robot and list them in the order

po := col(p21 , . . .pU1
1
, . . . ,p2R , . . .pUR

R
) ∈ Rn(U−R), (5.36)

from robot 1 to robot R. The positions of the R tags 1r are also grouped in the vector

pc := col(p11 , . . . ,p1R) ∈ RnR.

Then, we have p̃U = col(po,pc,θ).

Next, for each tag jr ∈ Ur other than 1r, we add the constraint f (r,jr)(p1r ,pjr ,θr) = 0 ∈ Rn,
where

f (r,jr)(p1r ,pjr ,θr) = pjr − p1r − exp([θr]×)pr
jr1r , (5.37)

with the notation (depending if n = 2 or n = 3)

[θ]× =
0 −θ
θ 0

 , if θ ∈ R,

[θ]× =


0 −θz θy

θz 0 −θx

−θy θx 0

 , if θ = [θx, θy, θz]⊤ ∈ R3.

There are Ur − 1 constraints of the form (5.37) for robot r, each of dimension n, which
represent a change from the known coordinates pr

jr1r in the robot frame to the (unknown)
coordinates pjr1r in the world frame F, with the matrix exp([θr]×) representing the rotation
matrix from F to the frame of robot r, using the exponential coordinate representation [Lynch
and Park, 2017]. Define in the following the notation exp([θr]×) := Rθr

and

Φ(r,jr)
θr

:= Rθr
pr

jr1r , for jr ∈ Ur, 1 ≤ r ≤ R.

Remark 5.9. Recall that when n = 2, we have simply

exp([θ]×) =
cos(θ) − sin(θ)

sin(θ) cos(θ)

 ,
and when n = 3, exp([θ]×) can be computed efficiently using Rodrigues’ formula [Lynch and
Park, 2017, Proposition 3.1].

Considering (5.37) for all R robots, we obtain U −R constraints on the parameters p̃U , each
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of dimension n. We list these constraints in the same order as for po in (5.36) and denote
them fRP(po,pc,θ) = 0. For the constrained CRLB, we are interested in the kernel of the
Jacobian matrix of fRP. Remark that with the chosen ordering of tags and constraints, we
have ∂fRP

∂po
= In(U−R). If we define

N :=
[

∂fRP
∂pc

∂fRP
∂θ

]
, (5.38)

and ARP := span
{
ker ∂fRP

∂p̃U

}
, then immediately

ARP = span
{
ker

[
In(U−R) N

]}
= col

(
−N, I(n+q)R

)
. (5.39)

Indeed, ∂fRP
∂p̃U

is of rank n(U − R), so ARP should have nU + qR − n(U − R) = (n + q)R
independent columns, and clearly

∂fRP

∂p̃U
ARP = −N + N = 0.

Hence, it is sufficient to compute N to obtain ARP.

Proposition 5.6. The matrix N in (5.38) is defined by

N = col
(
{N(r,jr)}1≤r≤R,2r≤jr≤Ur

r

)
∈ Rn(U−R)×(n+q)R.

where the blocks N(r,jr) ∈ Rn×(n+q)R are stacked in the same order as po in (5.36) and are of
the form

N(r,jr) = −
[
0n,n(r−1) In 0n,s N(r,jr)

θr
0n,(R−r)q

]
with s = (R− r)n+ (r − 1)q, where

N(r,jr)
θr

=


[1]×Φ(r,jr)

θr
∈ R2 if n = 2,[

Φ(r,jr)
θr

]
×

Ωθr ∈ R3×3 if n = 3,
(5.40)

with Ωθr := (θrθ
⊤
r + (I3 −Rθr

)[θr]×)∥θr∥−2.

Proof. Decompose N(r,jr) by blocks

N(r,jr) =
[
G1 . . .GR H1 . . . HR

]
with Gi ∈ Rn×n and Hi ∈ Rn×q. The matrix N(r,jr) is obtained by taking the partial



78

derivatives of f (r,jr) in (5.37) with respect to the coordinates of p1r , which gives the block
Gr = −In, and with respect to the coordinates of θr, which gives the block Hr = −N(r,jr)

θr
∈

Rn×q. All other blocks are zero. The expression of Hr comes from the fact that [θr]× = θr [1]×
when n = 2, whereas when n = 3, we have

∂Φ(r,jr)
θr

∂θr

= −Rθr
[pr

jr1r ]×
θrθ

⊤
r + (R⊤

θr
− I3)[θr]×

∥θr∥2

from [Gallego and Yezzi, 2015, Result 1]. This expression is further reduced to the one in
(5.40) using elementary properties of rotation matrices.

With the matrices F̃U and ARP defined in (5.35) and (5.39), we can follow the discussion
of Section 5.6.1 and define BRP := ARP[A⊤

RPF̃UARP]†A⊤
RP to obtain a CRLB taking the RP

constraints into account. We can build a cost function providing a lower bound on MSE of
the tag positions as

Jc(p) = Tr
{
CBRPC⊤

}
, (5.41)

similarly to (5.31), where C = [InU 0nU,qR] is introduced here to select the nU × nU first
block of BRP and hence consider only the uncertainty in the estimate p̂U . Alternatively,
the uncertainty in the estimate of the whole extended state p̃U can be considered by using
the matrix C = diag(InU , wθIqR), with wθ a weight to select. To compute the gradient with
respect to p for (5.32), similarly to (5.34), we have, for ξ ∈ {x, y, z} :

∂Jc

∂ξi

= 2Tr
{

C
∂ARP

∂ξi

D⊤
}
− Tr

{
D
∂Fc

∂ξi

D⊤
}
, (5.42)

with D := CARPF−1
c , assuming Fc = A⊤

RPF̃UARP to be invertible. To compute the derivative
∂ARP/∂ξi, it is sufficient to know how to compute the terms ∂N(r,jr)

θr
/∂ξi. Then, noting that

Φ(r,jr)
θr

= pjr − p1r , the differentiation of (5.40) yields

∂N(r,jr)
θr

∂ξi

=

[1]× eξ ψjr(i) if n = 2;

[eξ]× Ωθr
ψjr(i) if n = 3,

for ξ ∈ {x, y, z}, where ex, ey, ez forms the canonical basis of R3, and we introduced the
notation ψjr(i) equals to 1 if i = jr, to −1 if i = 1r and to zero otherwise.
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5.7 Simulations

In this section, we present simulation results for two deployment scenarios. The first scenario
is a structure inspection problem by a multi-robot network maintaining localizability while
the task is performed. The second concerns the deployment of an Unmanned Ground Vehicle
(UGV) carrying several tags, where we include the distance and relative position constraints
in the CRLB-based potential.

5.7.1 Cooperative Structure Inspection

Consider a system composed of N = 16 agents, with U = 12 tags carried by mobile robots
(i.e., U = {1, . . . , 12}) andK = 4 fixed anchors with known positions (i.e., K = {13, . . . , 16}).
Each robot carries an UWB transceiver to communicate and take ranging measurements with
any other robot or UWB anchor, following the model (5.1), via a Two Way Ranging (TWR)
protocol [Mai et al., 2018,Prorok, 2013].

We assign an inspection task to the two first robot-tags 1 and 2, called “leaders”, while
the remaining robot-tags UF = {i ∈ U , i > 2} are called “followers” and deploy to support
accurate localization. The leaders are required to visit ten waypoints each, underneath a
50 m × 10 m rectangular structure represented in blue in Fig. 5.3, in order to inspect it.
The links in the ranging/communication network are represented on Fig. 5.3 by the sparsity
pattern of the network adjacency matrix, i.e., showing its non-zero entries. In particular, we
stress that the leaders cannot communicate directly with the anchors.

Motion Planner for the Follower Robots

We follow the motion planning framework based on artificial potentials presented in Section
5.2. To enhance the localizability of the robots, we chose to include in the overall potential the
cost JD(p) = − log det FU introduced in Section 5.3. This choice is motivated in particular
by the fact that in a decentralized system, computing the gradient of JD via Algorithm 5.1
requires a single distributed matrix inversion. We add safety margins between robots by
introducing a collision avoidance potential

Javd(p) = 1
2
∑
i∈U

∑
j∈U∪K

(
d−1

ij − da
−1
)2

1dij<da .

We also encourage ranging tags to maintain proximity, in order to limit the potential dete-
rioration of ranging measurements at long distances, e.g., due to power fading. To do so, we
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Figure 5.3: Initial system configuration, waypoints for the leaders 1 et 2 and ranging network
sparsity

use the potential
Jcon(p) = 1

2
∑
i∈U

∑
j∈Ni

(dij − dc)2 1dij>dc .

In our simulations, we set da = 2 m and dc = 50 m.

Therefore, the overall potential is defined as J(p) := KlJD(p)+KcJcon(p)+KaJavd(p) where
Kl, Ka, Kc > 0 are constant parameters. The leaders travel directly to their prespecified
waypoints. Meanwhile, each follower i ∈ UF implements the following gradient descent
scheme

pd
i,k+1 = p̂i,k −

∂J(p̂U ,k)
∂pi,k

×min
{

1, ∆vel

∥∂J/∂pi,k∥

}
, (5.43)

i.e., with robot i at its current position pi,k at period k ≥ 0, a gradient step provides the next
desired position pd

i,k+1. The min term bounds the stepsizes so that ∥pd
i,k+1 − pi,k∥ ≤ ∆vel,

for some specified value of ∆vel. For ξi ∈ {xi, yi}, we compute ∂JD/∂ξi by (5.17), possibly
using Richardson iterations presented in Algorithm 5.1 for a decentralized implementation.
The expressions of the derivatives ∂Jcon/∂ξi and ∂Javd/∂ξi of the other potentials are stan-
dard [Lynch and Park, 2017] and can be distributively computed since they only depend on
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each tag’s neighborhood. Note that in (5.43) we do not assume that the true positions are
accessible but compute the gradients at the estimates p̂i,k (see (5.46)).

The gradient descent scheme is used to obtain desired waypoints for the tags, which we can
track using controllers on the robots. For concreteness, assume that all robots are identical
with unicycle kinematics [Corke, 2011, Chap. 4]

ẋM = v cos(θ), ẏM = v sin(θ), θ̇ = ω (5.44)

where ω and v are the rotational and translational velocities and θ is the robot’s heading
with respect to F. The coordinates of the tag in the robot’s frame (for any i) are pr

i = [a, b]⊤,
with a ̸= 0, see Fig. 5.4. With ṗi ∈ R2 the velocity of tag i in F, implementing the following
Proportional-Integral (PI) controller

ṗi = KP (pd
i (t)− pi(t)) +KI

∫ ⊤

τ=0
(pd

i (τ)− pi(τ))dτ, (5.45)

with KP , KI > 0, allows the tags to track the desired (piecewise constant) trajectory pd.
This corresponds to a velocity command ui := [vi, ωi]⊤ for robot i, since ui = T(θi)ṗi [Lynch
and Park, 2017, Section 13.3.1.4] with

T(θ) = 1
a

a cos θ − b sin θ a sin θ + b cos θ
− sin θ cos θ

 .

Figure 5.4: Robot and tag configuration for trajectory tracking. (M, x⃗r, y⃗r) is the robot
frame
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Simulation and Performance Analysis

We choose the weights in the potential J as Kl = 5 × 104, Ka = Kc = 1 × 103 and the
maximal step length ∆vel = 2 m. When the leaders reach their o-th waypoint, we repeat the
iterations (5.43) Niter = 30 times to compute sufficiently distant waypoints for the followers.
Then, we only transmit the desired position pd

i,oNiter to the controller of each follower i ∈ UF

in order to enhance the tags’ localizability. The tags are positioned on the robots so that
a = b = 0.5 m, and the PI controller gains are Kp = 3, Ki = 0.5. The controller (5.45)
follows the trajectory computed from (5.43) with a maximum tracking error of about 10 cm.

To illustrate the performance of our deployment scheme we perform M = 1000 Monte Carlo
simulations, using the measurement model (5.1) with σ = 5 cm. At simulation ρ, the position
estimates p̂ρ

U ,k used in (5.43) are obtained by solving the least-squares problem

p̂ρ
U ,k = argmin

pU ∈R2U

Q(pU),

with Q(pU) :=
∑
i∈U

∑
j∈Ni

(∥pi,k − pj,k∥ − d̃ρ
ij,k)2, (5.46)

where pj,k is the anchor position in (5.46) if j ∈ K and d̃ρ
ij,k are the range measurements.

As shown by the trajectories on Fig. 5.5, the leaders follow their assigned paths and the
followers maintain the network’s localizability. Initially, all robots are aligned, a geometry
with poor localizability. On Fig. 5.6, we plot the empirical average J̄D and 3σ confidence
bounds (CBs) for the potential JD over the M simulations. Initially, the localizability po-
tential decreases as the followers deploy. The following step increases occur when the leaders
move to their next waypoints and the network extends, while the anchors remain fixed and
far away, see Fig. 5.5. Overall however, the followers manage to keep the localizability at
a low value. For comparison, we plot in blue on Fig. 5.6 the evolution of the localizability
potential without deployment of the followers. We also plot the empirical statistical entropy
ln det Σ̃k and its CBs, with Σ̃k the empirical covariance of the estimates p̂U ,k obtained by
solving (5.46). The plot highlights that the entropy remains close to the theoretical lower
bound provided by JD, as discussed in Section 5.3.2.

Even though the deployment is performed here using JD to measure localizability, which is
related to entropy, Fig. 5.7 shows that other localization accuracy measures are improved as
well. In this case, we plot the empirical Root Mean Squared Error (RMSE) for the location
estimate of the first leader tag, the plot for the second leader being similar. Namely, at each
iteration k of (5.43), we compute the empirical MSE M̃SE1,k := 1

M

∑M
ρ=1 ∥p̂

ρ
1,k − p1,k∥2, with

p̂ρ
1,k the estimate of p1,k for simulation ρ. Then R̃MSE1 := (M̃SE1,k)1/2. The CBs shown
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Figure 5.5: Tag trajectories in the workspace

on Fig. 5.7 are defined by b±,k = s
1/2
±,k, where s±,k = M̃SE1,k ± 3σ̃1,k/

√
M , with σ̃2

1,k =
1

M−1
∑M

ρ=1[∥p̂
ρ
1,k − p1,k∥2 − M̃SE1,k]2 the empirical variance of the samples. For comparison,

we also plot R̃MSE1 without deployment. The empirical RMSE is significantly reduced by
the motion of the followers, remaining below 12 cm even when the leader 1 is at its farthest
waypoint.

Distributed Gradient Computations

Here we illustrate the convergence of the distributed algorithms of Section 5.5 estimating
the gradients of the localizability potentials, more specifically Algorithm 5.1 (D-Opt) and
Algorithm 5.2 (E-Opt). Define the relative error ϵSl

on the gradients at the l-th iteration as
follows

ϵS,l = ∥
̂[∂JS/∂pU ]l − ∂JS/∂pU∥2

∥∂JS/∂pU∥2

for each scheme S ∈ {D,E} producing the estimates [ ̂∂JS/∂pU ]l. On Fig. 5.8 we plot
the errors ϵE,l and ϵD,l for increasing values of l at the last (fixed) configuration pU of the
trajectory shown on Fig. 5.5. For the D-Opt scheme, we arbitrarily choose the initial
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Figure 5.6: Localizability potential with and without follower deployment, empirical entropy
and 3σ confidence bounds obtained from the Monte-Carlo simulations. The leaders’ way-
points are updated every Niter = 30 iterations of the gradient descent scheme

condition x0 = In×u in Algorithm 5.1, which is far from the ideal value F−1
U . Nonetheless,

an error of 10% on the gradient is obtained after about 120 iterations. To estimate the
gradient of JE, we arbitrarily set w(0) = 1nU in Algorithm 5.2. In this case a relative error
of 10% is obtained after 50 iterations, with the inner loop to compute the squared norm of
the eigenvector set to ñiter = 10.

The convergence speed of both algorithm depends on the structure of FU and the chosen
initial condition. In practice, for k = 0 we can initialize the decentralized gradient estimation
schemes with arbitrary values and wait for a sufficient number of iterations, until some
stopping condition of the form maxi∈U ∥[ ̂∂JS/∂pi]l − [ ̂∂JS/∂pi]l−1∥ < ϵ is reached, for some
tolerance threshold ϵ > 0. Then, for the next periods k > 0 of the trajectory, we can use for
initialization the values obtained after convergence at the end of the previous period k − 1,
which should lead to faster convergence.
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Figure 5.7: Plot of the empirical RMSE over the trajectory

(a) Errors on D-Opt gradient. (b) Errors on E-Opt gradient.

Figure 5.8: Convergence of the D-Opt and E-Opt gradient estimates for the last configuration
in the trajectory
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5.7.2 Deployment of a UGV Carrying Several Anchors

Here we illustrate the results of Section 5.6 and the performance difference between leveraging
information only on relative distances or on the full relative positions. Consider the robot
shown in Fig. 5.9, following the kinematic model (5.44) and carrying two tags U = {1, 2}
placed at positions pr

1 = [1, 0]⊤ and pr
2 = [−1, 0]⊤ in the robot frame, centered at pM =

1
2(p1 + p2). Three fixed anchors K = {3, 4, 5} are placed at the coordinates p3 = [−5, 5]⊤,
p4 = [5,−5]⊤ and p5 = [5, 5]⊤ in the absolute frame. All nodes communicate and obtain range
measurements with each other, following the Gaussian additive model (5.1) with σ = 0.1 m.
The heading of the robot is θ and exp [θ]× is the rotation matrix between F and the robot
frame.

Figure 5.9: Robot equipped with two tags

In scenario (D), we include the constraint d12 = 2 m as in Section 5.6.2, and define the cost
function as (5.31). In scenario (RP), we include the constraint pr

12 = [2, 0]⊤ as in Section
5.6.3 and define the cost function as (5.41), so that it can be compared to the previous
one. We compute the potentials and their derivatives with the results of Section 5.6 and
implement the scheme (5.32) to compute a sequence of desired poses. The robot reaches
them by using the pose controller presented in [Astolfi, 1999], which includes heading control,
in contrast to (5.45). At k = 0, the initial configuration of the robot in both cases is given
by pM(0) = [−15,−4]⊤ and θ(0) = −π/8. The cost and robot trajectories are shown in Fig.
5.10, denoting F = 5000 the last iteration index of (5.32). Thanks to the dual penalization
of the rigidity constraint, the steady state configuration of the tags provided by (5.32) is
feasible for the robot.

The following constrained least-squares estimators p̂D
U and p̂RP

U of pU are implemented in



87

Figure 5.10: Deployment results for (D) and (RP) scenarios. The cost functions are plotted
as well as the positions during the trajectory
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scenarios (D) and (RP)


p̂D
U = argmin

p̂U

Q(p̂U),

s.t d̂12 − d12 = 0
and


p̂RP

U = argmin
p̂U

Q(p̂U),

s.t p̂21 − exp
[
θ̂
]

×
pr

12 = 0

where θ̂ := atan2(ŷ21, x̂21) and Q(pU) is defined in (5.46). We evaluate the localization
performance by computing the empirical MSE M̃SEU ,k := 1

2 [M̃SE1,k + M̃SE2,k] for the two
tag positions, using the same process as in Section 5.7.1, with M = 500 simulations.

Table 5.1: Monte Carlo Simulation Results. Empirical MSE at the initial and terminal point,
with 3σ confidence bounds

M̃SEU ,0 Confidence M̃SEU ,F Confidence ET
(D) 4.28 m2 ±0.03 m2 0.93 m2 ±0.02 m2 1.70 s

(RP) 2.97 m2 ±0.04 m2 0.63 m2 ±0.002 m2 1.89 s

The results shown in Table 5.1 indicate that the motion significantly improves the estimate
accuracy in both cases: around 78% for (D) and 79% for (RP). Moreover, the relative position
constraints provides a clear improvement to the MSE compared to only using the relative
distance information. Table 5.1 also provides the Execution Times (ET) of the deployment
algorithms for all the steps shown in Fig. 5.10. The simulation is coded in Matlab R2018b
and runs on a computer equipped with an Intel I7 processor. The ET for the (RP) scenario
is about 10% larger than for (D), due to the increased complexity to evaluate A and its
derivative. In summary, compared to (D), deployment using (RP) leads to a significant
improvement of the precision and a moderate increase of the ET.

5.8 Experiments

To validate experimentally some of the ideas presented in this paper, we placed two tags
U = {1, 2} on the same ground robot R1 and two anchors K = {3, 4} on two other robots
R3 and R4, as shown on Fig. 5.11. The anchors are externally positioned with a motion
capture system, which is also used in the following to provide the true positions of the tags
and evaluate the accuracy of position estimates. The anchors and tags are based on Qorvo’s
DW1000 UWB modules [Qorvo, 2022]. Each tag-anchor pair (u, k) ∈ U × K is measuring
its distance duk using a bias-compensated single-sided two-way ranging protocol described
in [Cano et al., 2022b]. The modules are placed at known height on masts, to limit signal
reflections on the ground.
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Anchor 3
Anchor 4

Tag 2

Tag 1

Figure 5.11: Robots, anchors and tags

Robot R1 is initially placed at location [−3, 0]⊤ in the world frame and is expected to follow
the x-axis of that frame until reaching the neighborhood of the final location at coordi-
nates [3, 0]⊤, see Fig. 5.12 and 5.15. To do so, the robot’s position is controlled by the
low-level trajectory tracking controller described in Section 5.7.1, using estimates p̂U of the
tags’ locations. These estimates are computed by collecting the four UWB-based ranging
measurements d̃uk between tags and anchors and solving the least-squares problem

p̂U = argmin
pU ∈C

∑
k∈K

∑
u∈U

(
||pu − pk|| − d̃uk

)2
, (5.47)

where C := {col(p1,p2) ∈ R4|p21 = exp([θ]×)p1
21} captures constraint (5.37), with the relative

position p1
21 = [0.3, 0]⊤ of the tags in the robot frame centered at p1 known. Here θ is the

heading of R1. Note that we do not attempt to improve the location estimates (5.47) by
filtering them, in order to emphasize the effect of the network geometry on the localizability
from the distance measurements alone.

First, R1 attempts to follow its path while the anchors remain fixed at [−3.3,±0.3]⊤ in the
Cartesian plane, as shown on Fig. 5.12. After each small motion, R1 stops and repeatedly
computes estimates of p̂U using (5.47), each time using fresh measurements. The resulting
estimates for tag 1 are shown by orange dots on Fig. 5.12. The position estimates are
increasingly noisy as R1 moves toward the positive x-axis, with the y-coordinate in particular
becoming increasingly uncertain. This is intuitive because the inter-anchor distance d34

becomes small compared to the measured anchor-tag distances. The trajectory of the robot
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Figure 5.12: Trajectory p1 of tag 1 and its estimates p̂1 in the Cartesian plane while the
anchors remain fixed

becomes increasingly erratic as a result of using poor estimates, which motivates improving
the localizability. Although the estimates could be filtered over time to improve their accuracy
and better track the desired path, this would lead to a slower system.

Figure 5.13: Motion of robot R1 with static anchors: empirical MSE of p̂U obtained from
solving (5.47) 500 times at each location, and localizability potential (5.41) for an ideal
trajectory of R1 with y1 = 0

Fig. 5.13 shows in blue the empirical average MSE obtained after solving (5.47) 500 times,
together with the 3σ confidence bounds on this MSE value. It also shows the localizability
potential Jc defined in (5.41), which is a theoretical lower bound on the MSE. We see that
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Figure 5.14: Localizability potential and squared errors over the tags’ trajectory, with fixed
anchors

Jc predicts an increasingly poor localizability as the robot moves toward the positive x-axis,
which is confirmed by the empirical MSE measurements.

Fig. 5.14 shows the squared errors ||p̂U −pU ||2 and the potential Jc over the tags’ trajectory,
on a semi-logarithmic plot. We note that Jc is generally a good indicator of the order of
magnitude of the expected uncertainties, which however are amplified in practice by other
effects such as multipath and non-line of sight measurements [Cano et al., 2019, Sahinoglu
et al., 2008].

Figure 5.15: Anchor and tag 1 trajectories when the anchors are mobile
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Next, we illustrate on Fig. 5.15 the trajectory tracking results when the anchors are deployed
simultaneously with R1, using the gradient descent scheme described in Section 5.6.3, with
the gradient expression (5.42). In this case, the position estimates produced by (5.47) exhibit
much less variance, which is confirmed also by Fig. 5.16. This figure also shows that the
localizability potential Jc is kept at a much lower value during the motion. The reduced
variance allows us to efficiently reject measurement outliers and maintain an empirical MSE
of about 12 cm along the trajectory, which is appropriate for indoor navigation. Hence,
this experiment highlights that localizability can be improved automatically in real-time,
even when using the position estimates to replace the true position in the gradient-based
deployment algorithm.
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Figure 5.16: Localizability and squared errors during deployment

5.9 Conclusion and Perspectives

This paper presents deployment methods applicable to Multi Robots Systems (MRS) with
relative distance measurements, which maximize localizability. Constrained Cramér-Rao
Lower Bounds (CRLB) are used to predict the localization error of a given configuration,
assuming Gaussian ranging measurement models. A connection between Fisher information
matrices and rigidity matrices is highlighted, which yields useful invertibility properties, e.g.,
for initial MRS placement.

The CRLB is used to design artificial potentials, so that gradient descent schemes can be
developed to plan robot motions that enhance the overall localizability of the network. More-
over, we show how to distribute the execution of the gradient estimation algorithms among
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the robots, so that they only need to communicate with their neighbors in the ranging graph.
Finally, we extend the methodology to MRS with robots carrying multiple tags, again lever-
aging the theory of equality-constrained CRLBs. Future work could consider also optimizing
the network topology, since maintaining ranging links typically entails a cost (consuming
bandwidth, computation resources, etc.). Developing formal closed-loop stability properties
for the gradient-based control law with noisy position estimates is also of interest.

Acknowledgements

The authors thank Drs. Éric Chaumette, Gaël Pagès and Ali Naouri from ISAE-Supaéro
(France) for helpful discussions.



94

CHAPTER 6 ARTICLE 3 : OPTIMAL LOCALIZABILITY CRITERION
FOR POSITIONING WITH DISTANCE-DETERIORATED RELATIVE

MEASUREMENTS

Published in IEEE/RSJ International Conference on Intelligent Robots and Systems, Octo-
ber, 20th 2022.

Coauthors : Justin Cano1,2, Gaël Pagès1, Éric Chaumette 1, Jérôme Le Ny2

1 DEOS, ISAE-Supaéro, Toulouse France.
2 EE Dept., Polytechnique Montréal, QC, Canada & GERAD, Montréal, QC, Canada.

Abstract

Position estimation in Multi-Robot Systems (MRS) relies on relative angle or distance mea-
surements between the robots, which generally deteriorate as distances increase. Moreover,
the localization accuracy is strongly influenced both by the quality of the raw measurements
but also by the overall geometry of the network. In this paper, we design a cost function
that accounts for these two issues and can be used to develop motion planning algorithms
that optimize the localizability in MRS, i.e., the ability of individual robots to localize them-
selves accurately. This cost function is based on computing new Cramér Rao Lower Bounds
characterizing the achievable positioning performance with range and angle measurements
that deteriorate with increasing distances. We describe a gradient-based motion-planning
algorithm for MRS deployment that can be implemented in a distributed manner, as well as
a non-myopic strategy to escape local minima. Finally, we test the proposed methodology
experimentally for range measurements obtained using ultra-wide band transceivers and il-
lustrate the improvements resulting from leveraging the more accurate measurement model
in the robot placement algorithms.

6.1 Introduction

Reliable and accurate localization systems are critical for mobile robots to autonomously
perform tasks in their environment. Various positioning technologies, e.g., short- and long-
range radio-frequency (RF) systems, camera- or Lidar-based systems, offer different trade-offs
in terms of performance, cost or applicability in various environments [Groves, 2013,Corke,
2011]. Generally however, these technologies provide different modalities to obtain range or
angle measurements between a robot and environmental features or between different robots
in a Multi-Robot System (MRS).
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The quality of the position estimates produced for an MRS based on relative range or angle
measurements depends on the geometry of the network, a phenomenon known as dilution of
precision [Groves, 2013, Chap. 7]. The relationship between network geometry and the ability
of the robots to localize themselves can be captured through a localizability cost function
[Le Ny and Chauvière, 2018], and the robots can then move to optimize this cost function
and thus their positioning performance [Le Ny and Chauvière, 2018,Irani et al., 2019,Papalia
et al., 2021, Cano and Le Ny, 2021]. Localizability can be quantified independently of the
localization scheme by using Cramér Rao Lower Bounds (CRLB), which provide a bound on
the error covariance matrix of any unbiased position estimator one may implement in the
MRS.

The CRLB depends on the specific stochastic error model considered for the raw distance or
angle measurements. Although explicit CRLBs have been developed for measurement noise
with constant variance [Patwari et al., 2005, Cano and Le Ny, 2021], in practice we observe
for many systems that the quality of measurements degrades with distance. To address this
issue, connectivity constraints can be added to maintain the robots sufficiently close [Michael
et al., 2009, Yang et al., 2010]. However, such constraints increase the complexity of the
motion planning problems, and moreover this approach captures the issue of measurement
quality only indirectly, leading to suboptimal geometries. Hence, in this paper we propose
a measurement variance model with polynomial dependence on the robot inter-distances
and derive the corresponding CRLB to be used to quantify localizability and develop MRS
deployment algorithms.

To illustrate the usefulness of deriving more refined CRLBs and localizability measures, we
focus on localization using Ultra-Wide Band (UWB) transceivers [Sahinoglu et al., 2008].
This technology can provide distance measurements with decimeter to centimeter-level accu-
racy [Decawave, 2017] while being relatively inexpensive and energy efficient, which makes it
particularly attractive for robotics applications [Ledergerber et al., 2015,Mai et al., 2018,Cano
et al., 2022b], especially indoors. We consider the problem of localizing multiple robots
equipped with UWB transceivers, called tags, communicating with each other and with
other transceivers, called anchors, the location of the latter being known. Anchors can also
be carried by mobile robots having access to an external source of localization. With enough
relative distance or angle measurements obtained between the transceivers, the robot posi-
tions can be estimated for example using least-squares or filtering techniques [Etzlinger and
Wymeersch, 2018, Sahinoglu et al., 2008]. UWB sensors can acquire relative range [Lederg-
erber et al., 2015, Cano et al., 2022b] or angle [Peng and Sichitiu, 2006, Dotlic et al., 2017]
measurements, using a variety of protocols transmitting signals between nodes. The accuracy
of these protocols deteriorates with the distance between transceivers because the received
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signal power decreases and errors due to fading and multi-path increase. In particular, the
received signal power directly influences the Leading Edge Detection (LDE) algorithm used
to estimate the signals’ time-of-flight [Sahinoglu et al., 2008,Cano et al., 2022b]. Therefore,
using a localizability criterion relying on the network’s geometry without taking into account
a realistic measurement error distribution can lead to misleading predictions about the tags’
localization accuracy.

The rest of the paper is organized as follows. After a description of the problem in Section 6.2,
Section 6.3 presents the distance-dependent variance model for relative measurements and
illustrates how to fit such a model experimentally for UWB range sensors. For this general
polynomial variable model, the new localizability criterion is derived in Section 6.4, based on
Fisher Information Matrices defining the CRLB, computed in Section 6.5. Then, we present
optimization algorithms in Section 6.6, which include gradient-descent based algorithms as
well as non-myopic strategies to escape local minima. Finally, Section 6.7 validates the
methodology experimentally and illustrates the benefits of incorporating the refined model
with distance deteriorated measurements to predict localization accuracy.

6.2 Problem Statement

Consider the problem of localizing in a given reference frame in dimension n, with n = 2 or 3,
a set U of U tags with unknown positions, while relying on a set K of K anchors with known
positions. Relative angle or range measurements µij ∈ R are available between a subset E of
the tags and anchors, with i ∈ U and j ∈ U ∪ K. Note that these measurements can involve
either tag-tag or tag-anchor pairs, i.e., E ⊂ U × (U ∪ K). The coordinates pi ∈ Rn of node
i ∈ U ∪ K in the reference frame are denoted pi = [xi, yi, zi]⊤ if n = 3 or pi = [xi, yi]⊤ if
n = 2. Each tag is assumed to be carried by a robot, and a subset KM ⊆ K of the anchors
can also be mobile. Let p := [. . .p⊤

i . . . ]⊤ ∈ RnN denote the positions of the N := U + K

nodes (anchors or tags).

6.2.1 Robot Placement Problem

We aim to move the robots to enhance the localizability of the tags, which is some measure
of the accuracy with which we can compute an estimate p̂U of the vector of tag positions
pU := [. . .p⊤

i . . . ]⊤ ∈ RnU , i ∈ U . Since the localizability depends on the network geometry
p, we introduce a localizability function J(p), which takes smaller values when the achievable
accuracy for p̂U increases. We then aim to find the optimal geometry p∗, solution to the
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following placement problem for the mobile nodes

p∗ = argmin
{pj}j∈KM ∪U

J(p) + Jtask(pU), (6.1)

where Jtask(pU) is an additional cost function that represents the tasks to be achieved by the
robots carrying the tags. Indeed, from the tags’ point of view, J can be seen as a constraint
(e.g., avoid configurations with poor localizability) as they must achieve tasks while been
accurately localized. The function J should take into account both the geometry and the
quality of the relative measurements µij.

6.2.2 Distance-Deteriorating Measurement Models

The localizability depends on the assumed relative measurement model. In this paper, we
consider the following Gaussian model

µij ∼ N
(
µ̄ij(pij), σ2

ij(dij)
)
. (6.2)

where µ̄ij is a mean function that depends on the relative positions pij := pi−pj of the pairs
of agents (i, j)∈ E . The variance σ2

ij(dij) of these measurements is a function of the inter-
node distance dij := ||pij||. Moreover, we assume that the measurements are independent for
distinct pairs (i, j). This type of measurement model is standard for example for RF sensors
estimating distances from Time-of-Flight (ToF) measurements [Patwari et al., 2005,Mai et al.,
2018]. It is also used in 2D to model noise in Angle of Arrival (AoA) measurements [Peng
and Sichitiu, 2006,Patwari et al., 2005]. However, σ2

ij is generally assumed to be a constant,
independent of the position, although in practice it is generally the case that the quality
of the measurements decreases as the distance increases [Patwari et al., 2005], especially as
we approach the maximum range of a given technology. Hence, we propose to use variance
functions σ2

ij(dij) that model the degradation in measurement accuracy with distance, in
order to improve the ability of the function J(p) to accurately predict the localizability.
It is important however to keep the computation of the function J and of its derivatives
sufficiently simple in order to develop tractable motion planning algorithms.

6.3 Distance-Dependent Variance Model

In this section, we introduce a general polynomial model of the measurement variance σ2
ij(dij)

in (6.2). As an application, we calibrate a model of distance measurements with UWB
transceivers.
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6.3.1 Polynomial Variance Model

The proposed polynomial variance model is

σ2
ij(dij;ααα) = α0 +

P∑
l=1

αl(dij − δl)l1δl<dij
. (6.3)

where P ∈ N is the chosen degree of the polynomial and ααα = [α0, α1, δ0, . . . , αP , δP ]⊤ ∈ R2P +1
+

is a vector of parameters. The l-th order term of the polynomial activates at the distance
δl. We assume that α0 > 0 because measurements are uncertain even at close range, and
αl ≥ 0 and δl ≥ 0, ∀l ∈ [1, P ], to keep σ2

ij(dij) > 0 and increasing with distance. CRLBs are
derived in [Patwari et al., 2005] for the constant variance case where P = 0. The model (6.3)
offers additional flexibility at long range while still allowing closed form expressions for the
localizability function.

The parameter vector ααα in (6.3) for a specific system and environment can be identified
by collecting M measurements {µk

ij(pij)}M
k=1 at a set M of relative positions pij, i.e., a

total of M × |M| measurements. We can then compute the empirical means ˆ̄µij(pij) =
1

M

∑M
k=1 µ

k
ij(pij) and variances σ̂2

ij(pij) = 1
M−1

∑M
k=1(µk

ij(pij)− ˆ̄µij(pij))2, and finally obtain ααα
by solving the least squares problem

ααα = argmin
α̌αα∈R2P +1

+

∑
pij∈M

[
σ2

ij(||pij||; α̌αα)− σ̂2
ij(pij)

]2
. (6.4)

6.3.2 Application to UWB Two-Way Ranging Measurements

To illustrate the model (6.3), we consider relative distance measurements acquired by two
Decawave DW1000 © UWB sensors [Decawave, 2017] performing Single-Sided Two Way Rang-
ing (SSTWR). The exact protocol to deduce distance measurements from signal time-of-flight
measurements, including clock and power correction, is detailed in [Cano et al., 2022b]. The
UWB transceiver j is carried by a mobile robot as shown on Fig. 6.1, and the transceiver i
is fixed on a tripod. The robot moves to different positions while a motion capture system
provides exact measurements of pij. We compute empirical variances σ̂2

ij(pij) using M = 150
measurement samples at each relative positions pij. The results are plotted in Fig. 6.2 for
a straight line trajectory, as a function of dij. A polynomial fit of the empirical variance is
performed for P = 3 in (6.4) and shown in red.

At close range in Line-of-Sight (LoS) conditions, the received power is saturated, which can
explain that the variance remains relatively constant. At longer range, the fact that received
power theoretically decreases proportionally to the square of the distance could explain the
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Figure 6.1: Anchor, robot, motion capture system and UWB transceiver used for the variance
model calibration

parabolic shape of σ2
ij when dij > 6.5 m. Moreover, even in LoS, outlier measurements can

also be caused by multi-path propagation [Etzlinger and Wymeersch, 2018,Sahinoglu et al.,
2008], when reflected signals with significant power are detected by the LDE algorithm in-
stead of the wave on the direct path. For our set-up using a wheeled robot and isotropic
antennas, the planar ground leads to a higher chance of multi-path propagation as the dis-
tance increases. Note that the data collected to fit the model using (6.4) should include these
outlier measurements, in order to capture such trends.

Figure 6.2: Empirical variance and fitted polynomial
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6.4 Localizability Cost Function

As in [Le Ny and Chauvière, 2018], the cost function penalizing network geometries leading
to poor localizability, i.e., poor accuracy of the estimator p̂U of pU , can be constructed from
the CRLB. To define it, denote f(µµµ; p) the joint probability density function of the random
measurement vector µµµ = [. . . µij . . . ]⊤, which depends on the positions p of the tags and
anchors. Moreover, assume that the estimator p̂U is unbiased, i.e., E{p̂U} = pU . Then, the
covariance matrix Σp̂U ,p̂U of p̂U satisfies the CRLB [Kay, 1993, 3.3]

Σp̂U ,p̂U := E{(p̂U − pU)(p̂U − pU)⊤} ⪰ F−1
U , (6.5)

where A ⪰ B for symmetric matrices A,B means that A−B is positive semi-definite, and
FU ∈ RnU×nU is the Fisher Information Matrix (FIM), defined as follows [Kay, 1993, 3.7]

FU(p) = −Eµµµ

{
∂2 ln f(µµµ; p)
∂pU∂p⊤

U

}
. (6.6)

Note that the FIM depends on the global geometry p and also on the specific distribution f
of µµµ.

One can then define the localizability cost function to minimize as

J(p) := Tr
{
F−1

U (p)
}
, (6.7)

which is a lower bound on E{∥p̂U − pU∥2}, the Mean Square Error (MSE) of p̂U . Using
the CRLB has the advantage of providing a localizability measure that is independent of
the specific estimator p̂U implemented in the MRS. The function (6.7) corresponds to the
A-Opt optimal design strategy [Pukelsheim, 2006, p.137], other functions can be used, such
as JD(p) = log det F−1

U (D-Opt design) or JE(p) = −λmin(FU) (E-Opt design, to maximize
the minimum eigenvalue of FU), as discussed in more detail in [Cano and Le Ny, 2023, III].

6.5 Computing the FIM

In this section we derive a closed form expression of the FIM FU for the measurement model
introduced in sections 6.2 and 6.3, which is required to evaluate the localizability function J
in (6.7).
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6.5.1 Structure of the FIM

The nU×nU FIM matrix FU can be decomposed into n×n blocks Fij, 1 ≤ i, j ≤ U , written
as

Fij =


F xx

ij F xy
ij F xz

ij

⋆ F yy
ij F yz

ij

⋆ ⋆ F zz
ij

 or Fij =
F xx

ij F xy
ij

⋆ F yy
ij

 , (6.8)

depending if n = 3 or n = 2, where ⋆ denotes symmetric terms. From the assumption
that the measurements µij are independent and only available for (i, j) ∈ E , i.e., f(µµµ; p) =∏

(i,j)∈E fij(µij; pij), we deduce that Fij = 0 for (i, j) /∈ E , whereas for (i, j) pairs of tags in E

F ξη
ij := −Eµij

{∂2 ln fij(µij; pij)/∂ξi∂ηj}, (6.9)

where we denote pairs of Cartesian coordinates ξ, η ∈ {x, y, z}2 if n = 3 or ξ, η ∈ {x, y}2

if n = 2. We extend the expression (6.9) to tag-anchor pairs, so that Fij is defined for all
(i, j) ∈ E . Then, we find that

Fii = −
∑

j∈Ni

Fij,

where Ni = {j ∈ U ∪ K, (i, j) ∈ E}, by using the fact that

∂fij(µij; pij)/∂pi = −∂fij(µij; pij)/∂pj.

Note that Fii can require blocks Fij outside FU , i.e., when j ∈ K. Hence, it is sufficient to
obtain FU to compute the terms of (6.9) for all (i, j) ∈ E . For the Gaussian measurement
model (6.2), this can be done using the Slepian-Bangs Formula (SBF) [Kay, 1993, 3.9], which
gives for (i, j) ∈ E

F ξη
ij = ∂µ̄ij

∂ξi

∂µ̄ij

∂ηj

σ−2
ij + 1

2
∂σ2

ij

∂ξi

∂σ2
ij

∂ηj

σ−4
ij . (6.10)

We see that (6.10) involves the derivatives of the function σ2
ij defined in (6.3). For any

(i, j) ∈ E , coordinates ξi ∈ {xi, yi, zi}, ξj ∈ {xj, yj, zj}, and ξij = ξi − ξj, we have

∂σ2
ij

∂ξi

= ∂σ2
ij :=

P∑
l=1

αl l
ξij

dij

(dij − δl)l−11δl<dij
, (6.11)

and ∂σ2
ij/∂ξj = −∂σ2

ij/∂ξi. The expression ∂σ2
ij defined in (6.11) is zero if P = 0, i.e., if σ2

ij

is constant. Note that at points such that dij = δl, depending on the values of the constants
αl, (6.11) may only provide one-sided derivatives.
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6.5.2 Distance Measurements

Suppose that the measurements are distances µij = d̃ij given by the model (6.2) with mean
µ̄ij := ||pij|| = dij, so that ∂µ̄ij/∂ξi = ξij/dij = −∂µ̄ij/∂ξj. Starting from the SBF (6.10),
using identity (6.11) and differentiation rules, we obtained for (i, j) ∈ E

F ξ,η
ij = − ξij

dij

ηij

dij

σ−2
ij

[
1 + 1

2
(
∂σ2

ij

)2
σ−2

ij

]
. (6.12)

with σ2
ij defined in (6.3) (we omitted the dependence on dij for conciseness), and the same

notation for the coordinate η ∈ {x, y, z} as for ξ. Alternatively, we can write for (i, j) ∈ E

Fij = −wij

σ2
ij

pij p⊤
ij

d2
ij

, (6.13)

where wij := 1 + 1
2

(
∂σ2

ij

)2
σ−2

ij .

Remark 6.1. The formulas in [Patwari et al., 2005] correspond to (6.13) for a constant
variance Gaussian model, i.e., wij = 1. As in [Cano and Le Ny, 2023], (6.13) can be used to
establish a connection between the FIM and a weighted version of the infinitesimal rigidity
matrix [Tay and Whiteley, 1985], which can be used to provide conditions guaranteeing the
invertibility of FU [Cano and Le Ny, 2023, Theorem 2].

6.5.3 Angle Measurements

Suppose now that n = 2 and we have angle measurement µij := θ̃ij between nodes (i, j) ∈ E ,
with mean µ̄ij := θij := ∠(x⃗,pij), where x⃗ is a know reference direction. Without loss of
generality, we choose x⃗ = [1, 0]⊤, so that θij = atan2(yij, xij). For a coordinate variable
ξ ∈ {x, y}, we denote by ξ̄ the other coordinate. We also introduce the symbol sξ,η, which
is equals to 1 if η = ξ and −1 if ξ ̸= η. Finally, the SBF (6.10) yields directly the following
formula, if i ̸= j

F ξη
ij = − ξ̄ij

dij

η̄ij

dij

σ−2
ij

[
sξ,η

d2
ij

+ 1
2
(
∂σ2

ij

)2
σ−2

ij

]
. (6.14)

Alternatively, we can write for (i, j) ∈ E

Fij = σ−2
ij

[
−1

2
(
∂σ2

ij

)2
σ−2

ij

pij p⊤
ij

d2
ij

+ Bij

dij

]
, (6.15)

where Bij := d−1
ij (I2 − pijp⊤

ijd
−2
ij ).
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Remark 6.2. The matrices Bij are 2 × 2 blocks of the bearing rigidity matrix as defined
in [Zhao and Zelazo, 2015, Theorem 8]. As in Remark 6.1, this link can be used to provide
conditions guaranteeing the invertibility of FU .

6.6 Localizability Optimization Methods

In this section we discuss two motion strategies for the mobile nodes in U and KM that
improve localizability by minimizing the cost function J in (6.7).

6.6.1 Gradient Descent Strategy

To quickly improve the localizability of U , we can use a gradient descent strategy starting
from the initial configuration p0 of the network. For each agent i ∈ U ∪ KM , the successive
desired positions are computed as follows

pk+1
i = pk

i − ηmin
{

1, ηmax

||∂J/∂pi||

}
∂J

∂pi

⊤∣∣∣∣∣
pi=pk

i

, (6.16)

where k denotes a step index, using a normalized stepsize rule [Bertsekas, 2016]. The step
size η is a given positive constant and ηmax is a parameter adjusting the maximum distance
ηmaxη between two iterations. The gradient (∂J/∂pi)⊤ can be computed using standard
matrix differentiation rules [Petersen and Pedersen, 2012], which give for each coordinate
ζi ∈ {xi, yi, zi}, i ∈ U ∪ KM ,

∂J

∂ζi

= −Tr
{

F−2
U
∂FU

∂ζi

}
. (6.17)

In the Appendix, we provide an analytic formula for ∂FU/∂ζi, which can also be used to
evaluate gradients for cost functions JD and JE, from other optimal design strategies, see
[Le Ny and Chauvière, 2018].

Suppose that the scheme (6.16) converges after l iterations to a configuration pl in the
neighborhood of a local minimum, i.e., ||pl

i − pl−1
i || < ϵ for each mobile node i and some

threshold ϵ. The sequence of configurations {pk}l
k=0 can be computed offline and used to

provide a reference trajectory for a lower-level trajectory tracking controller. If used in real-
time in a feedback loop however, the gradients in the scheme (6.16) can only be evaluated at
the current estimates p̂, which are supposed unbiased.

The gradient descent scheme can also be implemented in a distributed manner by the nodes,
i.e., it is possible for each node i to compute its local gradient (∂J/∂pi)⊤ in (6.16) by com-
municating only with its ranging neighbors. Indeed, the FIM has the same sparse structure
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as in [Cano and Le Ny, 2023], so that the distributed algorithms presented in Section V.B in
that reference can be implemented.

6.6.2 Non-Myopic Localizability Improvement Policy

The gradient descent strategy can quickly improve the localizability of the MRS by finding
a local minimum pl of the function J . However, as we illustrate in Section 5.8, there may
exist other configurations relatively close to pl with significantly better localizability. Hence,
we propose a search strategy to attempt to discover such configurations.

To do so, we introduce a regular grid of Rn around each pl
i, for i ∈ U ∪ KM . Starting from

pl, we recursively construct the grid by allowing at each stage k motion vectors uk
i ∈ Rn for

each mobile robot i, with components ±δ for some step size δ, up to a maximum number
of moves D. We associate a stage cost to a motion uk

i , which can penalize odometry drift,
energy spent, etc. If we stop the robots in some configuration pk at stage k, the terminal cost
is J(pk). We then compute via dynamic programming [Bertsekas, 2012] trajectories for the
robots that minimize the sum of the stage costs and the terminal cost, up to the maximum
horizon D. The optimal trajectory found balances potential improvement in localizability
with the total cost of the additional motions from pl.

Note that the complexity of the dynamic programming algorithm is polynomial in D, but
exponential in the number of robots. It is also possible to reduce the size of the search space
by removing from the grid the configurations p such that J(p) > (1 + γ)J(pl) for some
parameter γ > 0, which prevents trajectories to go through configurations for the MRS that
deteriorate the localizability too much.

6.7 Experimental Validation

To test the models and methods developed in this paper, we consider a simple scenario with 3
fixed UWB anchors K = {K1, K2, K3}, located at p1 = [3.0, 2.0, 1.5]⊤, p2 = [3.0,−2.0, 1.5]⊤

and p3 = [−4, 0.1, 2.0]⊤, and a unique UWB tag T carried by the robot shown on Fig.
6.1. The position of the tag is pT = [x, y, z]⊤ where z = 0.43 m is a fixed constant and
pU := [x, y]⊤ has to be determined. The tag T acquires distance measurements with the
anchors using the SSTWR protocol described in [Cano et al., 2022b], and we aim to find a
position that optimizes its localizability.

The following model for the distance measurement variance is identified empirically in the
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(a) CV model (b) QV model

Figure 6.3: 2D localizability cost J(x, y) and computed paths for the tag, with the CV and
QV models

area where the experiment is held, as explained in Section 6.3

σ2
T j = α0 + α2(dT j − δ2)21δ2<dT j

, j ∈ K, (6.18)

where α0 = 0.0382 m2, α2 = 5 × 10−3 and δ2 = 4.5 m. To stress the benefits of using
the model (6.18) for localizability optimization, we consider two deployment scenarios: first,
using a Constant Variance (CV) model, as in [Cano and Le Ny, 2023], with α0 = 0.12 m2,
α2 = 0, and second using the Quadratic Variance (QV) model (6.18). Then, we compare the
actual positioning performances and the localizability potential values for both trajectories
to stress the benefits of the refined model.

The values of the cost J(pU) = Tr
{
F−1

U (pU)
}

for the CV and QV models are plotted on
a logarithmic color scale on Fig. 6.3. Note that FU corresponds to the information on x

and y coordinates but involves distance measurements in R3. The initial tag position is
pU(0) = [−2.5, 0.5]⊤. For the CV model, the cost presents minima that are quite far from
the anchors, which ignores the deterioration of the the measurements with the distance. In
contrast, the cost for the QV model has its global minimum inside the triangle formed by
the anchors, which is an intuitive placement solution.

To move the tag and optimize the localizability cost J , for both scenarios we first use the
gradient descent scheme (6.16). We set p0

U := pU(0), η = 200 and ηηmax = 0.5 m, and plot
the computed paths in red on Fig. 6.3. After convergence, which is detected using a tolerance
parameter ϵ = 0.1 m, we apply the Non-Myopic (NM) optimization strategy of Section 6.6.2.
We use a step size δ = 1.2 m, a depth D = 4 and a stage cost equal to 2.0×10−4×∥uT∥2. The
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NM strategy returns a path from pl
U to a potentially new point p∗

U with better localizability,
plotted in magenta on Fig. 6.3. However, in the CV case it turns out that pl

U was already
a global minimum of the cost function, so that the NM optimization has no effect for that
model.
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(a) CV model.
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(b) QV model.

Figure 6.4: Performed trajectory and robot position estimates

Then, the robot follows pre-computed trajectories joining the waypoints {p0
U , . . . ,pl

U , . . . ,p∗
U}

and acquires along them UWB range measurements with the anchors. At each position pU(t),
it measures distances d̃T j, j ∈ K, and computes its position estimate by solving the least
squares problem

p̂U(t) = argmin
p∈R2

∑
j∈K

(
d̃T j(t)− ||p− pj(t)||

)2
,

using the Gauss-Newton method [Bertsekas, 2016]. A motion capture system records the
true trajectory pU(t) of the robot. Since we are only interested here in characterizing the
localization error, we use pU(t) directly to control the motion of the robot and follow the
preplanned trajectory, instead of p̂U(t). Finally, we compute the Squared Error (SE) SE(t) =
||pU(t)− p̂U(t)||2 and the potential J(pU(t)). We plot the results on Figs. 6.4 and 6.5 for one
trajectory. We also summarize in Table 6.1 the empirical MSE and 3σ confidence bounds for
the initial and final position estimates in both scenarios over five trajectories.

During the first 3 seconds of each run, we observe large SE values, as shown on Fig. 6.5
and by the empirical MSE for pU(0) in Table 6.1. The cost J(pU) is correspondingly high,
i.e., the localizability is poor. Indeed, the cost function is a theoretical lower bound on
the MSE, which is highlighted along the trajectories by the superposition of J(pU(t)) and
SE(t) on Fig. 6.5. After about 4 seconds for both scenarios the localization error decreases
as the robot moves. However, range measurement errors presumably due to multi-path are
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Figure 6.5: Squared positioning error and localizability cost

observed when the robot is moving and is far from the anchors K1 and K2 (see Fig. 6.5a
after about 13 s for example), which yields a significant loss of precision. These distance-
dependent deterioration issues with the measurements are ignored by the CV model, while
using the QV model for deployment leads to a significant improvement of the MSE when the
final position p∗

U computed by the NM strategy is reached after 35 seconds.

Table 6.1: Empirical MSE for initial and final positions

[m2] pU(0) pU(tf ) (CV) pU(tf ) (QV)
MSE 0.38 0.23 8.3× 10−3

3σ ±0.09 ±0.01 ±0.46× 10−3

6.8 Conclusion and Perspectives

In this paper, we developed a localizability criterion taking into account relative measure-
ment distortion at long range, which provides a tighter bound on the covariance of position
estimates compared to constant measurement error variance models. To use this criterion for
robot deployment, we described gradient-based and non-myopic optimization schemes. The
possible improvements in positioning accuracy have been illustrated experimentally. Future
work includes developing tractable non-myopic policies to search for optimal configurations
over a larger area.
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Appendix : Derivatives of the FIM

Here we give the expressions of ∂Fij/∂pl required to evaluate ∂J/∂pl in (6.16) via (6.17).
Consider a coordinate ζl ∈ {xl, yl, zl}. If i ̸= j, ∂F ξη

ij /∂ζl = 0 for all l ̸∈ {i, j}. Next, if
i = j we have ∂F ξη

ii /∂ζl = −∑j∈Ni∩Nl
∂F ξη

ij /∂ζl. Finally, since the FIM FU is symmetric, we
have ∂F ξη

ij /∂ζl = ∂F ξη
ji /∂ζl. Therefore, to determine all the terms ∂F ξη

ij /∂ζl of ∂FU/∂ζl it is
sufficient to compute ∂F ξη

lj /∂ζl for j ∈ Nl. We find

∂F ξη
lj

∂ζl

= −∂rij

∂ζl

σ−2
lj qlj + rijζlj(∂σ2

lj)σ−4
ij qlj − rijσ

−2
lj

∂qlj

∂ζl

, (6.19)

where rij = ξljηljd
−2
lj and qlj = wlj = 1 + 1

2

(
∂σ2

lj

)2
σ−2

lj if we consider distance measurements
or qlj = sξ,η

d2
ij

+wij−1 for angle measurements. We then compute the two remaining derivatives
∂rij/∂ζl and ∂qlj/∂ζl. First, we have

∂rij

∂ζl

= d−2
lj γlj − 2ξljηljζljd

−4
lj ,

where

γlj =



ξlj if ζ = η and ξ ̸= η,

ηlj if ζ = ξ and ξ ̸= η,

2ζlj if ζ ∈ {η, ξ} and ξ = η,

0 if ζ ̸∈ {η, ξ}.

Second, if we consider distances measurement, we have
∂qlj

∂ζl

= ∂wlj

∂ζl

= ζlj

2dlj

(
2(∂2σ2

lj)(∂σ2
lj)σ−2

lj − (∂σ2
lj)3σ−4

ij

)
,

where
∂2σ2

lj =
P∑

l=2
αl l (l − 1)(dlj − d0,l)l−2 1d0,l<dij

,

and for angle measurements
∂qlj

∂ζl

= −2ζlj
sξ,η

d3
ij

+ ∂wlj

∂ζl

.
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Abstract

Accurate and real-time position estimates are crucial for mobile robots. This work focuses
on ranging-based positioning systems, which rely on distance measurements between known
points, called anchors, and a tag to localize. The topology of the network formed by the
anchors strongly influences the tag’s localizability, i.e., its ability to be accurately local-
ized. Here, the tag and some anchors are supposed to be carried by robots, which allows
enhancing the positioning accuracy by planning the anchors’ motions. We leverage Bayesian
Cramér-Rao Lower Bounds (CRLBs) on the estimates’ covariance in order to quantify the
tag’s localizability. This class of CRLBs can capture prior information on the tag’s position
and take it into account when deploying the anchors. We propose a method to decrease a
potential function based on the Bayesian CRLB in order to maintain the localizability of
the tag while having some prior knowledge about its position distribution. Then, we present
a new experiment highlighting the link between the localizability potential and the preci-
sion expected in practice. Finally, two real-time anchor motion planners are demonstrated
with ranging measurements in the presence or absence of prior information about the tag’s
position.

7.1 Introduction

Mobile robots require reliable, energy-efficient and real-time positioning systems to operate.
Various technologies can be used to estimate the position of a robot : computer vision [Corke,
2011] or Global Navigation Satellite Systems (GNSS) [Groves, 2013] are among the leading
ones. However, irrespective of the positioning system, an extrinsic measurement is required
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to determine the bodies’ locations in a given frame [Groves, 2013,Sahinoglu et al., 2008].

We focus on ranging-based localization, which determines positions thanks to distance mea-
surements between the robot to locate, called tag, and known reference points, called anchors.
For our experiments we use Ultra-Wide Band (UWB) sensors, which are increasingly pop-
ular in mobile robotics, due to their low cost and energy consumption [Amanda Prorok,
2013,Mai et al., 2018]. In particular, signal Time-of-Flight (ToF) estimation techniques ap-
plied to UWB allows up-to-decimeter ranging accuracy [Cano et al., 2022b,Sahinoglu et al.,
2008,Etzlinger and Wymeersch, 2018,Decawave, 2017], which makes the technology suitable
for indoor navigation.

Figure 7.1: Robots, fixed anchor and UWB sensors used in the experiments

Even with small ranging uncertainties, the geometry of the anchors’ network strongly in-
fluences the localizability of the tags, i.e., their ability to be accurately localized [Patwari
et al., 2005]. This phenomenon is known as Dilution of Precision (DoP) in the GNSS litera-
ture [Groves, 2013,Lv et al., 2010, Chap. 7] and transferable to mobile robotics. To quantify
these uncertainties over the tag’s location, the Cramér-Rao Lower Bound (CRLB), is com-
monly used as a performance metric for localization systems [Liu et al., 2012,Patwari et al.,
2005,Papalia et al., 2021]. The CRLB is a lower bound on covariance that permits computing
optimal theoretical performance of estimators independently of their implementation [Kay,
1993,Van Trees and Bell, 2007].

We assume that some anchors are carried by robots and can be deployed to enhance the
tag’s localizability. This property can be used to design motion planning algorithms, defining
a CRLB-based localizability potential (i.e., cost function) to decrease in order to improve
the tag’s positioning accuracy [Le Ny and Chauvière, 2018]. In previous work [Cano and Le
Ny, 2023], we proposed decentralized techniques to optimize localizability in Multi-Robots



111

Systems (MRS) and for robots carrying several tags [Cano and Le Ny, 2021]. The recent
work [Papalia et al., 2021] proposes to implement localizability constraints in graph-based
planners to enhance the MRS positioning performance. However, these methods requires tag
positions that can only been available through estimates.

In this paper, we present an experimental implementation of a motion planner proposed
in [Cano and Le Ny, 2023] for an MRS that uses tag position estimates as input. Moreover,
we define a novel criterion of localizability, taking into account prior information on the
tag’s position. Indeed, information on the position distribution can be obtained during the
estimation of the tag’s position, e.g., using Kalman Filtering. This additional information is
considered when modeling localizability, since it directly relates to the estimates’ accuracy.
To do so, we leverage Bayesian Cramér-Rao Lower Bounds [Van Trees and Bell, 2007]. We
also propose a motion planner to improve this bound in real-time and test it in an MRS
deployment experiment.

7.2 Problem Statement

Consider a set K of K anchors, with known positions. The anchors aim to localize a tag
T , which is a sensor carried by a robot with unknown position pU ∈ Rn, where n ∈ {2, 3}.
The tag performs with each anchor i ∈ K noisy distance measurements d̃i of di = ||pU − pi||
where pi ∈ Rn denotes i’s position. Then an estimate of p̂U is computed using the information
brought by these measurements. We assume that there exists a subset KM ⊆ K of KM mobile
anchors in Rn, each carried by a different robot.

Since the geometry of K strongly influences the quality of p̂U , our goal is to design motion
planners for KM in order to maintain an adequate localizability of T while its carrier performs
tasks. First, we model the amount of information brought by the observations d̃ used to build
p̂U . This approach leverages Fisher Information Matrices (FIM) for deterministic parameter
pU estimation as seen in [Patwari et al., 2005]. Second, we consider that prior information on
pU is available and used in the estimation process. We assume that the prior on the position
is actualized by its estimator that gathers range measurements during the tag trajectory.
In particular, we focus on the case of the popular Kalman Filter (KF) that dynamically
provides a Gaussian model to quantify its estimates’ uncertainties. Here, we propose to
incorporate this new information in the localizability evaluation thanks to the Bayesian
Fisher Information Matrix (BFIM). In Section 7.3, we give its definition and a methodology
to compute it.

In order to deploy KM , we design in Section 7.4 a localizability potential JC(pKM
,pU), where
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pKM
∈ RnKM contains all the positions of KM . Based on the the BFIM, this potential models

the expected precision of the estimates, i.e., JC increases when the quality of p̂U decreases.
This yields a minimization problem to deploy KM towards an optimal configuration p∗

KM

that minimizes JC for a given pU . We also provide an experiment that highlights the relation
between p̂U precision and this potential.

Section 7.5 presents motion planners for KM that maintain dynamically tag’s localizability
in deterministic (i.e., without prior) or Bayesian contexts. We stress that since the tag
is moving to perform tasks, each pk

U at time k yields generally a different optimal anchor
placement pk∗

KM
. For the Bayesian case, a methodology is provided to decrease JC if the prior

density at time k is Gaussian. These algorithms are then tested on an MRS in Section 7.6.
In these experiments, the tag is being located with the Least Squares (LS) algorithm and the
KF respectively, using the estimates p̂U in the motion planning process.

7.3 Information Modeling

We aim to quantify the information provided by the measurements and a (possible) prior
on pU . First, we define the FIM and relate it to the uncertainty on p̂U . Then, we propose
methods to evaluate it numerically.

7.3.1 Cramér-Rao Lower Bound

Consider the Probability Density Function (PDF) of the prior pU on pU denoted fπ : Rn 7→
R+,pU → fπ(pU). We have fµ : RKn 7→ R+, d̃ → fµ(d̃; p) the measurements’ PDF, con-
sidering the vector d̃ = [. . . d̃i . . . ]⊤ with i ∈ K gathering the observations and the vector
p = [. . .p⊤

i . . .p⊤
U ]⊤ containing the sensors’ positions. We assume that these PDFs are twice

continuously differentiable. Under these assumptions the Bayesian Fisher Information Ma-
trix (BFIM) [Van Trees and Bell, 2007] of pU is defined as follows

FB(p)=−EpU ,d̃

{
∂2 ln fµ(d̃; p)
∂pU∂p⊤

U

}
− EpU

{
∂2 ln fπ(pU)
∂pU∂p⊤

U

}
(7.1)

where ∂2f•/
(
∂pU∂p⊤

U

)
defines the Hessian matrix of f• with respect to pU . If fπ is unknown,

(7.1) is simplified and yields the Deterministic Fisher Information Matrix (DFIM)

FD(p) := −Ed̃

{
∂2 ln fµ(d̃; p)
∂pU∂p⊤

U

}
, (7.2)

that only depends on the range measurements distribution.
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Theorem 7.1 (Cramér-Rao Lower Bound [Van Trees and Bell, 2007]). If the BFIM is
invertible then the estimator’s covariance satisfies

Σp̂U := E{(p̂U − pU)(p̂U − pU)⊤} ⪰ F−1
B (p),

where the notation A ⪰ B denotes that A − B is positive semi-definite for A and B sym-
metric. In the case of an invertible DFIM FD, if E{p̂U} = pU , then Σp̂U ⪰ F−1

D .

This result is known as the Cramér-Rao Lower Bound (CRLB) and we use it as a proxy to
quantify the tag’s localizability. This performance bound has the advantage to be an explicit
function of p. It can be decreased by moving KM and is quickly calculable, as shown in the
rest of this section.

7.3.2 Computation of the DFIM

We assume that the distance observations d̃ are Gaussian and independent which is common
when modeling ToF-based range measurements [Patwari et al., 2005,Sahinoglu et al., 2008].
Thus we have d̃ ∼ N (d,ΣΣΣd), denoting d = [. . . d⊤

i . . . ] ∈ RK and ΣΣΣd = diag(. . . σ2
i . . . ) ∈

RK×K . To compute the DFIM, we use the Slepian Bangs Formula (SBF) for real Gaussian
distributions.

Proposition 7.1 (Slepian-Bangs Formula [Kay, 1993] ). Consider a position vector pU =
[x, y, z]⊤ (resp. pU = [x, y]⊤) that parameterizes the PDF fg of a Gaussian random vector
g ∼ N (ḡ(pU),ΣΣΣg(pU)), with ḡ ∈ RK and ΣΣΣg ∈ RK×K for some K ∈ N. Then, the coefficients
F ξ,η = −Eg {∂2 ln fg/∂ξ∂η} of the DFIM Fg ∈ Rn×n of g with respect to pU coordinates are
given as follows

F ξ,η
g = ∂ḡ

∂ξ
ΣΣΣ−1

g

∂ḡ
∂η

+ 1
2Tr

{
ΣΣΣ−1

g

∂ΣΣΣg

∂ξ
ΣΣΣ−1

g

∂ΣΣΣg

∂η

}
,

where η, ξ ∈ {x, y, z} if n = 3 (and η, ξ ∈ {x, y} if n = 2).

Since ∂di/∂ξ = (ξ−ξi)/di for a given coordinate ξ ∈ {x, y, z} and ΣΣΣd is assumed independent
of the position, the application of the SBF yields [Patwari et al., 2005]

FD(pK,pU) =
∑
i∈K

1
d2

iσ
2
i

(pU − pi)(pU − pi)⊤, (7.3)

where pK = [. . .p⊤
i . . . ]⊤ contains the anchors’ i positions. The equation (7.3) clearly indi-

cates that the estimates’ quality depends on the tag’s relative positions (RP) ei := pU − pi
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with respect to the anchors i. The CRLB exists over a simple condition on the RPs presented
below.

Proposition 7.2. FD is invertible if and only if n relative position vectors ei, i ∈ K span
Rn.

Proof. We gather the RPs ei in E = [. . . ei . . . ] ∈ Rn×K from (7.3) and note that FD =
EQE⊤, with Q = diag(. . . d−2

i σ−2
i . . . ) a invertible diagonal matrix. Then, noting that

rank(FD) = rank(E) fulfills the proof.

7.3.3 BFIM Computation with Gaussian Prior

Before deployment, the tag might know with some uncertainty its initial position, e.g., we
assume that it lies in the operating zone. However, the tag moves to fulfill its task and
the prior uncertainty can be propagated through time while updating the distance measure-
ments. Here, we suppose that a distribution is provided by the estimator of pU and can
be used in order to compute the BFIM over time. Typically, if a KF estimator is used to
locate the tag, it yields at each time k the estimate p̂k

U and its estimated covariance matrix
Σ̂ΣΣ

k

pU
[Kay, 1993]. We assume that the PDF fπ of the prior on pU is the Gaussian distri-

bution N (pU ,ΣΣΣ) with ΣΣΣ a given definite positive matrix. Thanks to the SBF, we compute
EpU

{
∂2 ln fπ(pU)/

(
∂pU∂p⊤

U

)}
= −ΣΣΣ−1 and finally (7.1) becomes

FB(p) = EpU {FD(pK,pU)}+ ΣΣΣ−1. (7.4)

Then, we need to evaluate EpU {FD(pK,pU)} which is not analytically possible in gen-
eral. However, we can approximately evaluate it thanks to the unscented transform algo-
rithm [Sarkka, 2013, Chap. 5], which is a standard approach to sample random Gaussian
distributions. To do so, we compute R := [r1 . . . rn] the generalized square root of ΣΣΣ i.e.,
which fulfills ΣΣΣ = R⊤R. Then, we form the set of sampling points

S = {pU} ∪n
i=1 {pU + δri,pU − δri} ,

where η = δ
√
n+ β is parameterized with some constants α, β > 0. Finally, this expectation

can be approximated with

EpU {FD(pK,pU)} ≈
∑

yj∈S
wπ(yj)FD(pK,yj) (7.5)

where w(yj) = fπ(yj)/
∑

l∈S fπ(yl). The scheme (7.5) provides a computationally efficient
estimate F̂B of FB, which can be implemented in real-time.
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7.4 Localizability Potential

Here, we design a localizability potential that permits KM deployment. Then an experiment
that illustrates the link between empirical localizability and its potential is provided.

7.4.1 Localizability Potential

We aim to design motion planners that enhance the quality of p̂U . We use LS and the KF
estimators to compute these estimates. These algorithms are designed to minimize the total
Mean Square Error (MSE) of p̂U , defined as follows

MSE(p̂U) := E{||p̂U − pU ||2} = Tr {Σp̂U} .

Thus, we choose the MSE as performance criterion on the estimates to quantify the tag’s
localizability. The CRLB, defined in the Theorem 7.1, yields the following result for each
considered FIM, C ∈ {D,B} depending with respect to which information we condition

JC(pKM
,pU) := Tr

{
F−1

C (p)
}
≤MSE(p̂U), (7.6)

where JC(pKM
,pU) is the localizability potential and with pKM

:= [. . . ,p⊤
i , . . . ]⊤ for i ∈ KM .

Then, we assume that decreasing JC yields a better MSE for the estimator p̂U in practice
[Patwari et al., 2005,Papalia et al., 2021]. Hence, we define the following placement problem
for the mobile anchors

p∗
KM

= argmin
pKM

∈RnKM

JC(pKM
,pU) (7.7)

where p∗
KM

depends on the tag’s position. We propose to solve (7.7) locally in real-time
by descending the potential gradient, which is a common approach for mobile robot motion
planning [Choset et al., 2005]. We compute the partial derivatives of JC , with respect to
ξi ∈ {xi, yi, zi} a given coordinate of i ∈ K, thanks to the following formula [Le Ny and
Chauvière, 2018]

∂JC(pKM
,pU)

∂ξi

= −Tr
{

F−2
C

∂FC

∂ξi

}
, C ∈ {D,B}. (7.8)

Then, the results of (7.8) are gathered in gradient vectors

∇iJC(pKM
,pU) := [∂JC(pKM

,pU)/∂pi]⊤ ∈ Rn

for each i ∈ KM , which yields the total gradient ∇JC(pKM
,pU) = [. . .∇iJ

⊤
C (pKM

,pU) . . . ]⊤ ∈
RnKM for the set KM . The differentiation of the DFIM defined in (7.3), required to evaluate



116

the gradient of JD with (7.8), gives

∂FD

∂ξi

= 1
σ2

i

(
2(ξ − ξi)

d4
i

eie⊤
i + 1

d2
i

Dξi

)
, (7.9)

denoting ξ ∈ {x, y, z} the tag’ coordinates. Dξi
∈ Rn×n is obtained using elementary differ-

entiation rules

Dη,ζ
ξi

=


2(ξi − ξ), if η = ζ = ξ,

ζi − ζ, if η = ξ and ζ ̸= ξ,

0, if η ̸= ξ and ζ ̸= ξ,

and Dζ,η
ξi

= Dη,ζ
ξi

, for all η, ζ ∈ {x, y, z}2.

7.4.2 An Example of Localizability Enhancement

We show an example that highlights the dependence between the localizability potential and
the estimates’ precision through a simple experiment. Consider a localization system made of
two fixed anchors K = {K1, K2} and a tag, carried by a ground robot shown in Fig. 7.1. Here,
the anchors and the tags are custom boards equipped with a Decawave DW1000M UWB module
[Decawave, 2017]. The anchors are placed on tripods at the same height z1 = z2 = 1.7 m.
We assume that the tag’s height z = 0.7 m is a known parameter and so pU = [x, y]⊤ has
to be determined through ranging. Each anchor-tag pair (i, T ), i ∈ K acquires a distance
measurement d̃i thanks to the bias-compensated Single-Sided Two-Way Ranging (SSTWR)
protocol described in [Cano et al., 2022b]. These estimates p̂U are computed by solving the
LS problem

p̂U = argmin
pU ∈R2

∑
i∈K

(
d̃i − ||p′

U − p′
i||
)2

(7.10)

thanks to the Gauss-Newton algorithm [Bertsekas, 2016], where p′
U := [p⊤

U , z]⊤ and p′
i :=

[p⊤
i , zi]⊤. Here, we assume that the information is modeled by the DFIM FD introduced

in (7.2) since we do not provide prior information to build p̂U . The measurement noise is
modeled with a standard deviation of σ = 2.5 cm. We used a millimeter-accurate motion
capture system, which provides a ground truth for pU , to compute estimation errors.

As shown in Fig. 7.2, the tag’s initial position p̂U(0) is almost aligned with the anchors. This
configuration has a poor localizability since Proposition 7.2 states that the DFIM is singular
in the case of sensors alignment. To improve this configuration, the robot is deployed following
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Figure 7.2: Estimates p̂U(t) and actual trajectory pU(t)

a gradient descent scheme [Le Ny and Chauvière, 2018] using (7.8) and (7.9)

pk+1
U = pk

U − γk∇TJD(pk
U),

with ∇TJD(pk
U) = −∑i∈K∇iJD(pk

U). The superscript k denotes time indices and γk > 0
is a normalized step-size [Bertsekas, 2016]. We provided the way-points generated by the
scheme to a lower-level position controller [Lynch and Park, 2017, p.529] using the ground
truth values as input. The trajectory is visible in Fig. 7.2 and superposed with the obtained
estimates p̂U .

In Fig. 7.3 we plotted the time series of the localizability cost function JC(pk
U) alongside the

empirical squared errors SEk := ||p̂U − pU ||2 for a trajectory realization. As seen in (7.6),
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Figure 7.3: Localizability function and squared errors
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the potential JD is a lower bound on the expectation of the squared error which seems to
be empirically observed along the trajectory after 1 s. To highlight this remark, we plotted
a 100-point sliding average curve over 5 trajectories in Fig. 7.3. This experiment stresses
that the descent of the localizability potential has strongly enhanced (SE decreases of three
orders of magnitude) the estimates’ quality.

7.5 Motion Planners

In this section, we provide two methods to decrease the localizability potentials JD and JB

with real-time position estimates.

7.5.1 Deterministic Motion Planner

In this subsection we suppose that we do not have access to prior information, i.e., pU is
treated as a deterministic parameter and JD is considered as the potential. To decrease
this function, we use the Deterministic Motion Planner (DMP) based on the approach pre-
sented in [Cano and Le Ny, 2023, V]. This motion planner uses the estimated gradient
∇pKM

Jc(pKM
, p̂U) of Jc(pKM

,pU) where pU is replaced by its estimate p̂U . At each time k,
a local variable ql,k is set to q0,k = pk

KM
in order to perform the following descent operation

ql+1,k = ql,k −ΓΓΓl∇JD(ql,k, p̂k
U), (7.11)

for l ∈ [0, L − 1] where L is the maximum iterations number. The localizability gradient is
evaluated with the last available estimate p̂k

U . The step-size matrix ΓΓΓk = diag(. . . , γk
i In, . . . )

is parameterized with γl = γ0 min{1, γM ||∇iJD(ql, p̂k
U)||−1} where γ0 > 0 and γM is set

order to limit the magnitude of the gradient [Bertsekas, 2016]. The DMP is stopped i)
if maxi ||∇iJD(ql,k, p̂k

U)|| < ϵ where ϵ > 0 is a given tolerance; or ii) if L iterations are
computed and then yields pk,∗

KM
. Finally, pk,∗

KM
is transmitted to the mobile anchors, setting

pk+1
KM ,ref := qL,k as the anchors’ controller references at time k + 1.

7.5.2 Bayesian Motion Planner

In the case of a Gaussian distribution prior N
(
pk

U ,Σk
)
, the information is gathered in the

BFIM FB given by (7.1). Here we propose the Bayesian Motion Planner (BMP) that de-
creases an approximated gradient of JB. We suppose that ΣΣΣk and p̂k

U are known by the
motion planner at time k. First, the equation (7.8) used to compute the potential gradi-
ent involves the quantity Fk

B which must be estimated. To do so, we use the numerical
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approximation (7.5), that yields F̂k
B computed thanks to {p̂k

U ,ΣΣΣk}. Second, ∂FB/∂ξ
k
i com-

putation is required for all ξk
i ∈ {xk

i , y
k
i , z

k
i } with i ∈ KM at time k. The computation of

∂FB(pk)/∂ξk
i = ∂EpU

{
FD(pk

U ,pk
K)
}
/∂ξk

i involves an expectation over the prior PDF and
cannot be analytically computed.

To address this issue, we implement a stochastic gradient algorithm [Bottou, 2012]. The
BMP initializes the local variable q0,k = pk

KM
similarly to the DMP. At each iteration l of

the algorithm, a random draw rl with rl ∼ N
(
p̂k

U ,Σk
)

is realized. Then for each mobile tag
i ∈ KM , we compute the following gradient descent step

ql+1
i = ql

i − γl∇̂iJ
l
B, (7.12)

where ∇̂iJ
l
B = [. . . sl

ξi
. . . ]⊤, for ξ ∈ {x, y, z} with

sl
ξi

= Tr
{(

F̂l
B

)−2 ∂FD(ql, rl)
∂ξi

}
, (7.13)

and ql = [. . .q⊤
i . . . ]⊤. In (7.12), for a sufficiently small step-size γl, we approximate

∂EpU {FD(pK,pU)} /∂ξi after repeating the iterations. Indeed, performing (7.12) with small
moves empirically averages the gradient by successive draws and then estimates its expecta-
tion with a limited computational cost [Bottou, 2012]. We adjusted ΓΓΓl with the rule presented
in Section 7.5.1 in order to compute ∇̂pKM

JB(ql, rl) = [. . . , ∇̂iJ
l
B, . . . ]⊤, i ∈ KM . After L

iterations of (7.12), the BMP transmits qL,k to the anchors as new reference positions pk+1
KM ,ref.

Algorithm 7.1 summarizes the procedure.

Algorithm 7.1: BMP algorithm.
Input: pk

K,p̂k
U ,ΣΣΣk

1 q0,k = pk
KM

2 for l ∈ [0, L− 1] do
3 draw randomly rl ∼ N

(
p̂k

U ,Σk
)

4 compute F̂B with (7.5)
5 compute ∇̂pKM

JB(ql, rl) with (7.12)
6 ql+1,k = ql,k −ΓΓΓl∇̂pKM

JB(ql, rl)
7 end
8 transmit pk+1

KM ,ref := qL,k to KM .
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7.6 Multi-Robot Deployment

We present two deployment experiments using the DMP and the BMP. We consider a system
of three anchors K = {K1, K2, K3}, with two of them KM = {K1, K2} carried by ground
robots (where z1 = 43 cm, z2 = 53 cm) and the third fixed on a tripod (z3 = 1.60 m). We
aim to localize a tag T carried by a robot (where z = 51 cm is known), with pU ∈ R2

unknown. The tag’s location is determined thanks to range measurements provided by
SSTWR performed by UWB sensors, as in Section 7.4.2. The three robots used in the
experiments are shown in Fig. 7.1.

Figure 7.4: System architecture

The tag has an assigned task that involves to follow a given trajectory {pk
U ,ref} along the

x-axis of the workspace between the origin and x(tf ) = 1.5 m, where tf is the final time of
the experiment. The estimates p̂U are used by the tag to perform its own trajectory and
by the anchors to decrease the localizability potential. The architecture of the system is
summarized in Fig. 7.4 and is implemented using the middleware ROS Melodic.

7.6.1 DMP implementation with LS estimator

First, we implemented the DMP using p̂k
U obtained by the LS estimator (7.10) with the last

available measurements. The initial positions pj(0) of the robots j ∈ KM ∪ {T} with the
fixed anchor’s position p3 are shown in Fig. 7.5. The DMP computes an iteration when the
reference position of the tag pk

U ,ref and the planed anchors’ position pk
i,ref are reached for K1

and K2 (with a tolerance of 20 cm). After convergence, the DMP sends to the anchors the
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new reference positions pk+1
i,ref while pk+1

U ,ref is independently sent to the tag. Then, they are
transmitted to the anchors position controllers and processed. After a time of tf = 140 s the
robots reached their final positions pj(tf ), j ∈ KM ∪ {T}.
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Figure 7.5: Robots trajectory and estimates (DMP/LS)
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Figure 7.6: Results with (DMP/LS)

The trajectories of each robot with the estimates p̂U are plotted in Fig. 7.5 and their squared
errors (SE) in Fig. 7.6a. During the trajectory, the average squared error on p̂U is around
(0.11)2 m, which remains sufficient to follow the tag’s reference trajectory. Nevertheless, we
noticed some estimation issues due to measurement outliers, produced by nearby reflective
surfaces such as the ground and the robots’ bodies. This is a strong motivation to con-
sider prior information (i.e., filtering) in the estimation schemes to filter these unmodelized
phenomena which can generate significant errors in the localizability gradient computation.
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In Fig. 7.6b we plotted the localizability potential computed with the estimated p̂U (i.e.,
JD(pKM

, p̂U), in blue) and the reference pU (i.e., JD(pKM
,pU), in red) obtained by the motion

capture reference system. The increases in the potential observable at t = 70 s and t = 110 s
are due to the tag deploying faster than the anchors while it achieves its task. Indeed, gradient
computations in (7.11) are based on the k − 1-th tag’s position. However, the potential is
decreased after the anchors’ deployment and maintained at low values during the trajectory.
We remark that the potential values in Fig. 7.6b are lesser than the SE presented in Fig.
7.6a since (7.6) holds.

7.6.2 BMP implementation with EKF estimator

Here, we present the BMP-based deployment while an Extended Kalman Filter (EKF) [Kay,
1993] is used to compute p̂U . In order to implement the EKF, we consider the continuous-
time kinematic state x(t) = [pU ,vU ]⊤, where vU = [vx, vy]⊤ is the tag velocity vector. We
suppose the single-integrator dynamic model as follows for ξ ∈ {x, y}

ξ̇ = vξ + ωξ,

v̇ξ = κξ

where ωξ are κξ independent centered white Gaussian noises with power spectral densities
Sω,ω = 10−2 and Sκ,κ = 10−3. The observation model, at time l is given by d̃l := dl + νννl

denoting dl = [d1, d2, d3]⊤ and νννl ∼ N (0, (0.05)2I3).
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Figure 7.7: Robots trajectory and estimates (BMP/EKF)
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Figure 7.8: Results with (BMP/EKF).

After careful discretization of the tag’s kinematics model, we implemented the EKF in the
corresponding robot. It allowed to compute estimates x̂l and their covariance matrices Σ̂ΣΣ

l

x

with an average refresh rate of 20 Hz when new measurements dl are available. We use as
input of the BMP at step k the last available estimate p̂k

U extracted from x̂k and ΣΣΣk := Σ̂ΣΣ
k

pU

from the estimated covariance Σ̂ΣΣ
k

x provided by the EKF. Then, we repeated with the BMP
the same experiment presented in 7.6.1.

For this experiment, the trajectories and the estimates are plotted in Fig. 7.7 while the
SE are shown in Fig. 7.8a. At the beginning of the trajectory, we observe on Fig. 7.8a a
quick decrease of the SE and the potential function on Fig. 7.8b. Indeed, the measurement,
provided at a 20 Hz refresh rate allows the EKF to converge fast and Tr

{
(ΣΣΣk)−1

}
increases

as the state estimate’s uncertainty decreases. Around t = 30 s, we notice a slight increase of
the potential values, due to the temporary alignment of the three robots in the workspace.
This slight raise yields an insufficient gradient norm to redeploy the anchors (the gradient is
strongly weighted by ΣΣΣk, which remains low has the EKF has converged) while the estimates
remains at tolerable precision. Moreover, in contrast to the experiment presented in Section
7.6.1, the EKF smoothed the errors generated by measurement outliers despite using a simple
kinematic model.

In the BMP experiment, the tag’s took tf = 36 s to reach its destination. This difference with
DMP is explained by the more restrained deployment of the anchors. Indeed, considering the
prior information given by the EKF (which takes into account all measurement history [Kay,
1993]) the localizability is less dependent on the geometry than in the deterministic case.
Despite transient effects at the beginning of the experiment due to the EKF convergence,
the mean of the SE over the trajectory is (0.11)2 m which yields a similar performance than
DMP for a faster deployment time. Indeed, the DMP deploys the anchors at local optimal
positions in terms of geometry at each time k irrespective of the prior information used to
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build p̂k, which can be time-costly. In contrast, the BMP is influenced dynamically by the
prior on pU and redeploys the anchors if that information suddenly decreases, which makes
it more operative.

7.7 Conclusion and Perspectives

In this paper, we showed a method to maintain the localizability of a robot performing relative
distance measurements with known positions sensors, i.e, anchors. Thanks to covariance
inequalities, we defined a novel localizability potential taking into account prior information
on the robot’s position. We proposed a methodology to compute and optimize this quantity
by moving mobile anchors. Through experiment, we highlighted the relationship between the
localizability cost function and actual positioning uncertainties. Finally, we validated existing
and novel motion planners in multi-robot experiments. Future work will include leveraging
tighter bounds capturing more realistic measurement models and prior dynamics.
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CHAPTER 8 BAYESIAN ANCHOR DEPLOYMENT

In this additional chapter, we are interested in the optimal deployment of static anchors to
maximize the tags’ localizability using distance measurements. This problem formulation
is of interest when the likely operating area of the tags is known a priori. In fact, this
information can be used by the position estimators of the tags. As a concrete example, the
estimate may be constrained to be located inside the workspace, which can be seen as a kind
of prior information.

The proposed approach requires a prior spatial statistical distribution of the tags within
the workspace. We aim to design an anchor deployment algorithm that maximizes the lo-
calizability of the tags while taking into account their prior distribution. The BCRLB is
particularly adapted to solve this problem, since it allows to incorporate prior information in
the modeling of the estimation uncertainties. However, this notion of uncertainty is defined
on average in the workspace, whereas we must also guarantee a minimum level of precision
at all locations.

8.1 Related Work

Let us give a brief overview of how the anchor deployment problem is treated in the literature.
The modeling of positioning uncertainty under Gaussian measurement is well studied in
[Patwari et al., 2005], using the CRLB as a modeling of positioning uncertainty of multi-agent
systems located by RMs. And it can be used to place agents to optimize the localizability of
tags, e.g. as claimed throughout Chapter 5. As an alternative to this uncertainty model, the
DoP can also be used to optimally place anchors to localize tags in a ranging context [Khalife
and Kassas, 2019,Zhao et al., 2020].

In [Ash and Moses, 2008], the authors propose an approach to optimize the geometry of
ranging networks in terms of a lower bound on the MSE using the trace of the CRLB. In this
paper, a planar solution is found by optimizing an algebraic criterion on the subspace of the
possible Euclidean transformations of the network’s agent positions. In [Jourdan and Roy,
2008], a Position Error Bound (PEB) optimization, in fact also a bound on the MSE derived
from a CRLB, is proposed for anchors located on an ellipse within the plane. In that work,
the authors used a single-term path loss model that exploited range-deteriorated centered
Gaussian noise with constant variance. In [Monica and Ferrari, 2015], another MSE lower
bound optimization for anchor deployment is proposed in the UWB range-based navigation
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context in a corridor. However, in practice, these indoor anchor deployment approaches are
limited to the boundaries of the workspace. This can be a problem since it is known that
MP outliers occur near reflective surfaces and could be exacerbated by placing the anchors
near walls that bound a workspace.

The more recent study [Khalife and Kassas, 2019] uses the DoP to quantify the positioning
uncertainty introduced by a given anchor geometry. In particular, the authors propose to
place additional sensors for source localization and select signal of opportunity to correct
vertical DoP in GNSS-based navigation solutions. The proposed approach uses both A and
D optimal design strategies to solve the problem via constrained fractional programming.
Zhao et al. in [Zhao et al., 2020] also use the DoP matrix to maximize the tags’ localizability
in UWB sensor deployment using Bayesian optimization to reduce a cost function based
on the GDoP. Again, this approach remains two-dimensional and aims to place anchors at
the boundary of the workspace. The preprint article [Panwar et al., 2022] aims to place
static UWB anchors that perform hybrid source localization, i.e., using ToA, RSS, and AoA
fused data to locate a given source. This theoretical study assumes that the placement is
performed knowing the location of the source, which is different from the problem addressed
in this chapter.

In this chapter, we propose an anchor deployment method that takes into account both range
deteriorated RMs and prior information on the location of the tags in order to maximize
their localizability. The deployment algorithm takes advantage of the BCRLB to model the
uncertainties, which is a novel approach in anchor deployment that allows a more realistic
three-dimensional localizability optimization for a moderate computational cost. Another
novelty of the proposed method is that the tags positions are probabilistic, allowing the
geometry optimization for complex workspaces weighted by probability.

8.2 Problem Statement

We are interested in deploying static anchors performing distance measurements with tags
in an a priori known operating area. This section gives the mathematical formalism of that
problem. As a preliminary remark, we consider in the rest of this chapter that the tags are
laying at unknown places and that their location is modeled by a PDF, assumed known.

8.2.1 Notation and Assumptions

We want to place the set K of |K| = K anchors in a n-dimensional space (n ∈ {2, 3}). The
set K performs distance measurements with a set of tags U to position it. The positions of
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the tags are assumed to be unknown, although their PDF fU : Rn 7→ R+ is known. We also
assume that the tags are generally unable to perform RMs between themselves, as is typically
the case when OWR protocols are implemented. For the sake of simplicity, in this chapter,
we assume that there exists only a single probabilistic tag laying in the workspace. Then we
model a tag’s position by the random vector pU ∈ Rn following the law given by fU .

Here we consider the Gaussian range-deteriorated measurement model (6.2) introduced in
Chapter 6. Namely, we have the range measurement d̃k ∼ N (dk, σ

2
k(dk; α)) captured by the

anchor k ∈ K, where dk = ∥pU −pk∥. We recall that the general variance model σ2
k(dk; α) is

given in the equation (6.3).

dk

σ2
k

α0

δ2 δL

Figure 8.1: Example of typical variance model

This model allows to capture soft communication losses (as emphasized in Remark 5.2 in
Chapter 5) and power fading. In fact, a realistic anchor deployment scheme requires careful
modeling of distortion at long range in order to best match the real-world performance of
the localization system.

To give an illustration of such a model, in Figure 8.1 we have plotted a polynomial model
of the variance σ2

k(dk; α). This model includes standard performance at short range (teal
segment, with constant variance), then as dl increases, degradation due to RxP fading (or-
ange segment), and finally smooth communication losses (red segment) at long range. This
variance map is given by

σ2
k(dk; α) = α0 + α2(dk − δ2)21dk>δ2 + αL(dk − δL)L1dk>δL

, (8.1)

where 0 < δ2 < δL, α0, α2, αL ∈ R+
∗ and L is a high-order term (e.g., we took L = 6 in Figure

8.1).

We assume that the tag has access to K Gaussian distance measurements d̃k, collected in
the vector d̃ = [. . . d̃k . . . ] ∈ RK . In fact, the model (8.1) makes it possible to “naively” con-
sider the ranging graph to be fully connected by penalizing the quality of the measurements
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captured by the remote tags. For the rest of the discussion, we denote the joint PDF of the
K measurements as fµ, as in Chapter 7.

8.2.2 Anchor Deployment Problem

We aim to place the set K knowing the PDF fU of the tags in Rn. In practice, the anchor
deployment must satisfy several constraints. For example, they must be placed far enough
away from RF-reflecting surfaces and the tags’ operation zone to avoid interference with the
robots’ bodies. Therefore, to model these constraints, we assume that the anchors must
satisfy pK ∈ PK where P ⊂ Rn, using the notation introduced in Chapter 5. On the other
hand, we consider the subset Z ⊂ Rn, which models the robot’s workspace, i.e., where a
minimum localizability must be ensured. We call the subset P the placement domain and Z
the operation zone. Note that the above subsets and the PDF fU are illustrated in the figure
8.2.

Anchor

Figure 8.2: Illustration of the placement and operation zones with the tag’s position PDF

The deployment of the anchor set K can be seen as an average localizability optimization
problem under the constraint that a minimum precision is ensured for all possible positions
of the tag in Z. For this, we define the localizability cost function J(pU ; pK), which gives the
expected positioning uncertainty for a given (deterministic) tag position pU and an anchor
configuration pK.

Therefore, we aim to solve the following constrained optimization problem


p∗
K ∈ argmin

pK∈PK

EpU {J(pU ; pK)}

s.t. max
pU ∈Z

J(pU ; pK) < CM ,
(8.2)

where CM ∈ R, the maximum tolerated positioning uncertainty in the operation zone, is a
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known parameter. We also assume that the number of anchors K is known or imposed. This
fact implicitly allows a failure of (8.2) if the intended K is too small with respect to the
expected minimum performance CM , i.e., K should be increased. (8.2) is typically a difficult
combinatorial problem that cannot be solved optimally.

To approximate the optimal configuration p∗
K, we divide this problem into two parts. First,

in Subsection 8.4.1, a coverage problem is proposed that ensures minimum localizability
in the operation zone Z with respect to the cost function J , yielding an optimized coverage
configuration pc

K. Second, starting from pc
K, a local policy minimizing J , based on a stochastic

gradient descent using fU , is proposed in Subsection 8.4.2, with a stopping condition that
includes the inequality constraint in (8.2). The design and computation of such a function
is explained in Section 8.3.

8.3 Design of the Cost Function

Let us now construct the localizability cost function J that scores the uncertainty of a given
estimator p̂U that has access to the tag’s distribution and the measurement PDFs, namely fU

and fµ. Note that in this case, the PDF fU can be used as a prior information to build p̂U . If
we assume that the covariance Σp̂U is finite, then, using Theorem 7.1 presented in [Van Trees
and Bell, 2007], the BCRLB F−1

B satisfies

F−1
B ⪯ Σp̂U , (8.3)

assuming that the Bayesian FIM, given by

FB(pU ; pK) = −Ed̃,pU

{
∂2 ln fµ(d̃; pU ,pK)

∂pU∂p⊤
U

}
− EpU

{
∂2 ln fU(pU)
∂pU∂p⊤

U

}
, (8.4)

is invertible. This assumption is satisfied if there are at least n + 1 unaligned anchors in P
(see Proposition 7.2).

In order to solve (8.2), several assumptions have to be made on the uncertainty modeling. We
assume that the localizability cost function can be computed with moderate computational
cost for a given anchor configuration pK, tag PDF fU and measurement PDF fµ. In fact, in
general, criteria extracted from the Bayesian FIM are not analytic, i.e., they are accessible
only by numerical schemes.

Therefore, we restrict the tag’s location PDF to be Gaussian in this chapter for computational
reasons. Then the PDF fu is assumed Gaussian, parameterized by p̄ ∈ Rn and Σ ∈ Rn×n,
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i.e. pU ∼ N (p̄,Σ). In that case, one can express the following Bayesian FIM

FB(pU ; pK) = EpU

∑
k∈K

wk(pU − pk)(pU − pk)⊤

σ2
kd

2
k

+ Σ−1, (8.5)

where wk := 1 + 1
2 (∂σ2

k/∂dk)2
σ−2

k , with σk defined in (8.1). The previous result is derived
from the Slepian-Bangs formula [Kay, 1993, Section 3.9] and the demonstration is given in
Chapter 6. To estimate the FIM, we use the method based on the Unscented Transform
presented in Chapter 7, which leverages the scheme (7.5). Since this scheme has been used
in that chapter for real-time optimization for an implementation in a MRS, the evaluation
of the cost function is expected to be computationally affordable.

An application of the trace operator in (8.3) results in a MSE bound. Therefore, the following
localizability cost function can be defined

J(pU ; pK) = Tr
{
F−1

B

}
⪯ Ep̂U

{
∥p̂U − pU∥2

}
. (8.6)

This design choice is motivated by the fact that the inequality constraint parameter CM in
(8.2) is then directly related to a minimally achievable Root Mean Squared Error (RMSE).
This criterion, widely used in positioning algorithm performance analysis, can be used to set
an appropriate parameter CM . For example, if UWB distance measurement is performed
by TWR protocol to locate the tag, the order of magnitude of the expected precision, in
terms of RMSE, is at best the decimeter [Decawave, 2018]. In this case, we can choose for
instance CM = (5× 0.1)2 m2, i.e., the maximal lower bound tolerated on the RMSE within
the operation zone is 50 cm.

Nevertheless, the A-opt design used in (8.6) make the combinatorial problem difficult to solve
in a greedy manner, i.e., by placing the anchors one by one to decrease minpU J(pU ; pK). In
fact, it is known that this type of function is generally not submodular [Krause et al., 2008],
which implies that the greedy policy may produce results far from the global optimum [Bian
et al., 2017]. In contrast, other cost functions, such as the D-opt design, allow for near-optimal
results when greedy approaches are used [Sagnol, 2010, Section 7.2]. Therefore, for the design
imposed by (8.6), we cannot use greedy policies to solve efficiently the combinatorial problem
of anchor deployment.
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Figure 8.3: Deployment strategy

8.4 Deployment Algorithm

In this Section, we propose a two-step strategy for solving the deployment problem (8.2).
As shown in Figure 8.3, we first consider an initial configuration p0

K ∈ ZK , which may
be trivial (regular geometric form). Then, a simulated annealing heuristic is performed to
coarsely cover the entire zone Z with a minimum localizability, regardless of the occurrence
probability of the tags, represented by the PDF fU . Then, in a second time, the minimum
of the coverage problem pc

K is refined with a local method (stochastic gradient descent) to
minimize the expectation of the minimum MSE on tag location as written in the equation of
the problem (8.2). The optimization terminates when the constraint is about to be violated,
i.e., when CM − minpU ∈Z J(pU ; pK) ≤ ϵ, ϵ > 0, or when the number of iterations Miter is
exceeded. In the same Figure 8.3, the cost functions minimized by the two algorithms are
shown in blue.

The rest of this section explains the implementation of the algorithm, and an example of a
standard use case is provided in Section 8.5. This solver has been implemented in Python,
in our package BAD (Bayesian Anchor Deployment), which supports the main features of
localizability, relying on the Numpy library.

8.4.1 Minimal Localizability Coverage Problem Algorithm

Here, we are interested in solving the following auxiliary problem of (8.2), defined as follows

pc
K ∈ argmin

pK∈PK

max
Z

J(p; pK), (8.7)

in order to respect the constraint in the main deployment problem and to obtain a compliant
coarse initial anchor position pc

K before optimizing localizability. This formulation is largely
inspired by the coverage problem, which is well known in the sensor networks literature
[Cortes et al., 2004, Wang, 2011]. Since it is an NP-hard problem and not solvable by a
greedy policy, we propose a simulated annealing approach, which is widely used in coverage
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problem formulation due to its relative ease of implementation [Jourdan and Roy, 2008,Lin
and Chiu, 2005].

First, we (coarsely) discretize the zone of operation Z, which yields the set of finite points ZD.
We assume an initial configuration p0

K at the start of the algorithm as well as an exploration
step size η > 0.

At step l we start with the active configuration pa
K and evaluate a candidate configuration

pl
K = pa

K + ηr where r ∈ RnK is a random vector with components uniformly distributed
between −1 and 1. We then constrain pl

K ∈ PK to stay in the placement zone. Then the
selected configuration pl

K is compared to the best configuration found so far, and replaced if
it appears to be better.

Algorithm 8.1: Simulated Annealing.
Data: p0

K, θ0, β, η,ZD

1 θ0 ← θ0 J
best, Ja ← maxp∈ZD J(p; p0

K)
2 pbest

K ,pa
K ← p0

K.
3 for l ∈ [1, Niter] do
4 draw r ∼ U[−1nK ,1nK ] such that pl

K + ηr ∈ ZK

5 pl
K ← pa

K + ηδ
6 J l ← maxp∈Z J(p; pl

K)
7 if Jbest > J l then
8 pbest

K ← pl
K

9 Jbest ← J l

10 end
11 ∆l ← J l − Ja

12 θl ← βθl−1

13 sl ← exp(−∆l/θl)
14 draw ρ ∼ U[0,1]
15 if ∆l < 0 or ρ < sl then
16 Ja ← J l

17 pa
K ← pl

K
18 end
19 end
20 return pbest

K and Jbest

The simulated temperature θ, with the absorption factor 0 < β < 1 which makes it “cool
down” during the iterations, starts from the known initial θ0 and conditions a Metropo-
lis Hasting test. This test compares a random variable ρ ∼ U[−1,1] with the energy sl =
exp(−(J l − Ja)/θl) between the active and the local configuration based on their cost differ-
ence. If it succeeds, which is less and less likely over time as the system “cools down”, then
the local configuration l becomes the new active configuration a. In other words, this test
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allows random exploration of the placement zone PK with decreasing probability over time.

At the end of the optimization process, i.e., when Niter iterations have been performed, the
best configuration result that solves (8.7), is kept in memory. The found position pc

K := pbest
K

is transferred to the second level of our deployment strategy. The environment Algorithm
8.1 summarizes this process. If Jbest > CM , then the optimization process must be restarted,
increasing the number of anchors to satisfy the constraint on the MSE.

8.4.2 Local Average Minimization Policy

Starting from pc
K, we aim to solve locally the second auxiliary problem of (8.2), i.e., find a

local minimum of
p∗

K ∈ argmin
pK∈Pk

EpU {J(pU ; pK)} . (8.8)

To do so, we rely on a stochastic gradient algorithm similar to Algorithm 7.1 presented in
Chapter 7. Indeed, we can perform the stochastic gradient iterations for l ≥ 0, setting
p0

K = pc
K, as follows

pl+1
k = pl

k − αk
∂J

∂pl
k

∣∣∣∣∣
⊤

pl
k

,pU

(8.9)

for each anchor k ∈ K and a given random position pU drawn according to the PDF fU .
However, the solution must satisfy the constraint pK ∈ PK . To do so, we apply the following
stepsize rule

αl =

α0, if pl
k + α0(∂J/∂pl

k)⊤ ∈ P ,

0 otherwise,
(8.10)

where α0 > 0 is a fixed stepsize. For the evaluation of the gradient, we took advantage of
the closed form (7.13) given in Chapter 7, which relies on the element-wise differentiation
of E{∂2 ln fµ/

(
∂pU∂p⊤

U

)
} given in (6.19). The optimizer program stops when Miter has

been computed or if CM − maxpU ∈Z J(pU ; pK) < ϵ. The Algorithm 8.2 summarizes this
minimization process.
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Algorithm 8.2: Stochastic gradient descent
Data: pc

K, α, ϵ, CM

1 p0
K ← pc

K
2 for l ∈ [1,Miter] do
3 Draw a position pU following the PDF fU
4 for k ∈ K do
5 Perform the gradient descent (8.9)
6 if CM −maxpU ∈Z J(pU ; pK) < ϵ then
7 return p∗

K ← pl
K.

8 end
9 end

10 end
11 return p∗

K ← pl
K.

8.5 Simulations

Consider K = 10 anchors to place in a three-dimensional space (n = 3) to locate UAVs. We
assume that the workspaceW is a 40×40×5 m room, i.e., [x, y, z]⊤ ∈ W if |x| ≤ 20, |y| ≤ 20
and 0 ≤ z ≤ 5. The anchors are placed on tripods (with a maximum height of 2 m) and must
be placed inside the workspace but away from reflective surfaces. So we define the following
placement zone for the anchors

P = {[x, y, z]⊤ ∈ R3, |x| < 19.5, |y| < 19, 0.5 < z < 2}.

The UAVs that carry tags are supposed to fly over Z and their distribution is Gaussian,
namely pU ∼ N (µ,Σ) with the following variance and mean parameterization

µ = [0, 0, 2.5]⊤ , Σ = diag(σ2
xy, σ

2
xy, σ

2
z),

where σxy = 5 m and σz = 0.5 m. Here, we aim to find a solution to the problem (8.2) with
a constraint of CM = (0.5)2 m2 on the maximum value of the MSE lower bound. The setup
of the simulation is shown in the Figure 8.4.

Each anchor performs distance measurements with the Gaussian model described in Section
8.2.1, with α0 = 3.8× 10−2 m2 , α2 = 5.0× 10−4 , δ2 = 4.5 m and α1 = δ1 = αL = 0. These
parameters are taken from the experiment of Chapter 6, modeling only power fading effects
and not communication losses, since the dimensions of the workspace W are moderate. We
also assume that the measurements are performed in LoS.

Each anchor k ∈ K is initially (and arbitrarily) placed around the origin, p0
k = [r1, r2, r3]⊤
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Figure 8.4: Simulated scenario setup

with each ri ∼ U[−5×10−2,5×10−2], i ∈ [1, 3], is a small perturbation to avoid singularities in FB

(and thus in J). We chose such initial parameters to prove the efficiency of the simulated
annealing algorithm explained in Section 8.4.1. The discrete operation zone ZD, defined to
use Algorithm 8.1, is given by

ZD = {[iσxy, jσxy,mσz] ∈ R3, {i, j,m} ∈ {−2,−1, 0, 1, 2}3}.

The parameters for this scheme are as follows: the stepsize η = 2, the absorption factor β =
99/100, the initial temperature θ0 = 200 maxpU ∈ZD

J(pU ,p0
K) and the number of iterations

is set to Niter = 200. The result, obtained in 13 s on a standard off-the-shelf computer (with
an Intel Core i7 processor), is shown in Figure 8.5. It appears that simulated annealing
successfully and rapidly decreases the coverage criterion maxpU ∈ZD

J(pU ; pK) in Figure 8.5a.
After 190 iterations, the value stabilizes around 0.16 m2, which corresponds to a maximum
RMSE lower bound of 0.40 m in Z. The obtained solution pc

K, shown in red in Figure 8.5b,
satisfies the constraint set to CM = (0.5)2 m2 in (8.2).

Then pc
K is provided as input to Algorithm 8.2, tuned with a α0 = 0.7 stepsize and Miter = 104

iterations allowed. After a 63 s run, it successfully minimized EpU {J(pU ,pK)} without
violating the constraint imposed by CM , as highlighted in Figure 8.6a. In this figure, the
cost function (expectation) of (8.2) is plotted in blue, while the constraint (maximum value
on ZD) is plotted in red. Minimizing the average localizability yields a 26% gain on the MSE
lower bound, which is significant for the number of agents involved. The final anchor geometry
p∗

K is shown in green in Figure 8.6b, alongside the intermediate one pc
K in red, provided by

Algorithm 8.1. Overall, our strategy efficiently solved the deployment problem, i.e., by
obtaining an acceptable MSE while a minimal localizability is ensured in the workspace, for
a moderate computational cost, despite the relative complexity of the proposed scenario.
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Figure 8.5: Simulated annealing algorithm results
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8.6 Conclusion and Perspectives

In this Chapter, we have formulated a deployment problem for anchors that perform distance
measurements with randomly located tags. The knowledge of their probability distribution
allowed us to develop a strategy using a BCRLB-based localizability cost function. This
model allows to capture both the prior information accessible to the tags, their probability
density, and the information brought by the measurements. Subsequently, we proposed a
two-step optimization strategy that allows first to solve a combinatorial problem of optimal
localizability coverage and second to increase the average localizability of the tags. This
strategy makes use of well-known optimization algorithms: the simulated annealing heuris-
tic and the stochastic gradient descent. Finally, we simulated a practical three-dimensional
deployment scenario where our method succeeded in efficiently decreasing the average local-
izability of the tags while guaranteeing a good positioning accuracy coverage in the zone of
operation.
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CHAPTER 9 GENERAL DISCUSSION

“I have made this longer than usual because I have not had time to make it
shorter.”

– Blaise Pascal (1623-1662)

This short chapter discusses the overall contributions made during this thesis project. Here
we summarize both the main theoretical contributions and the validation processes which
were undertaken.

Article 1 : First, in Chapter 4, we proposed a methodology to characterize the systematic
bias in UWB ranging measurements under LoS conditions. A general methodology was
proposed for ToF-based protocols to calibrate the errors due to both the clock offset and the
RxP level. Indeed, since the LDE is used to determine the ToA and its performance depend on
the RxP, this quantity influences the estimates’ quality, independently of the protocol used.
However, the synchronization bias is highly dependent on the measurement protocol used,
which may include its estimation in the process, e.g., TDoA. Once the synchronization was
performed, we were able to build RxP calibration maps with a straightforward methodology,
in contrast to existing deep learning-based methods. These obtained calibration maps have
illustrated the repeatability of the results using a dozen UWB standard transceivers.

To highlight the duality of the bias calibration problem, induced by both synchronization
and RxP-dependent factors, we proposed an extended version of DSTWR using our correc-
tion algorithm. This protocol has been implemented on a commercial UGV carrying UWB
transceivers for validation purposes. To verify the repeatability of the experiments, they were
performed in two different laboratories using the same calibration data.

First, these experiments allowed to validate Hypothesis 1 (bias removal) at a reasonable
level for LoS scenarios. Indeed, it has been shown that the bias has been significantly
removed by our calibration method, with an order of magnitude smaller than the variance
of the SSTWR ranging protocol. Second, the Hypothesis 2 (Gaussian-centered model for
distance measurements) has also been validated by these experiments in LoS. To obtain such
measurements, masts have been used to move UWB transceivers away from the ground, which
is a reflective surface that generates MP contamination. Note that in the supplementary
article [Cano et al., 2023] a method is proposed to mitigate MP-contaminated scenarios
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using the M-Robust EKF when SSTWR is performed. The results of this work tend to
confirm the Hypothesis 2 once again.

Article 2 : In Chapter 5, we proposed a mathematical definition of MRS localizability
for Gaussian and log-normal unbiased distance measurements (leveraging Hypotheses 1 and
2) using the CRLB. We also established a connection between the FIM leveraged to model
localizability and the infinitesimal rigidity in order to take advantage of pre-existing results in
this field of research. The structure of the FIM and in particular its rank has been carefully
studied. Indeed, the fact that the FIM is non-degenerate allows to use the CRLB as a proxy
to model the positioning uncertainties. Then, we proposed to build an MRS deployment
scheme that improves the localizability of tags based on the artificial potentials method. The
chosen cost functions are popular in the wireless sensor network literature and come from the
theory of optimal design of experiments. To minimize these potentials on a large scale, we
proposed decentralized gradient descent strategies, built on existing generalist algorithms.

In the same chapter, we presented an extension of localizability to the case where several tags
are carried by the same robot. Two contributions were made considering both the inter-tag
distances and their relative positions. These approaches leverage the CCRLB and primal-
dual optimization scheme in order to respect the constraints in the tags’ motion planning
(since several are onboard the same vehicle). All of these extensions were tailored both for
UAV and UGV use-cases.

For the validation of the decentralized and noisy gradient descent, we used a large-scale
simulation. Then, we proposed a hardware experiment coupled with a simulation using the
CCRLB-based motion planner for an MRS. This example highlighted the benefits of our
planners and the realism of the localizability potential paradigm.

The results of both the experiments and the simulations presented in Chapter 5 or in the
preliminary work [Cano and Le Ny, 2021] tended to validate Hypothesis 3, which stated that
decreasing the localizability cost function brings an improvement in positioning accuracy.
On the other hand, the results of the simulation part of Chapter 5 tended to prove that
the decrease was feasible under noisy measurements and a complex MRS’s topology, i.e.,
validated Hypothesis 4. Furthermore, the real-time implementation presented in Chapter 5
tended to confirm this claim.

Article 3 : In Chapter 6, we extended the results of the previous work by modeling the de-
terioration of the RMs (including angle measurements) with distance. To do so, we proposed
a polynomial variance model identification that solves a LS-based fitting problem. Then, we
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derived the CRLB in this case and a localizability cost function. Since the FIM structure
remains the same in this model, the decentralized policies presented in Chapter 5 are still
applicable in this extension. Moreover, it allows to model smooth communication losses be-
tween agents at large distances. We compared the obtained result with the standard CRLB
formulation (presented in chapter 5) in an experiment of a UGV in a workspace equipped
with UWB fixed anchors. This validation allowed to emphasize that this CRLB is tighter
than the original one.

Article 4 : Then, in Chapter 7, we presented an extension of the CRLB scheme using
a Bayesian formulation (i.e., the BCRLB). We proposed a method to numerically evaluate
this new bound using a sigma points scheme for a Gaussian prior PDF. This model was
designed to plan the motion of UGV while using an EKF, taking advantage of the posterior
uncertainties given by the estimator. We proposed an optimization method for a localizability
cost function extracted from the BCRLB, based on stochastic gradient descent. We validated
this method in real time through a UGV deployment using both BCRLB and the original
(deterministic) CRLB.

As expected, the refined localizability models presented in both Chapter 6 and 7 were closer to
the estimator performance than the model presented in Chapter 5. In fact, the introduction of
a more sophisticated and empirically identified measurement model in chapter 6 has yielded
a MSE bound closer to reality than that of the constant variance model. On the other hand,
the introduction of BCRLB in Chapter 7 allowed to obtain a better performance prediction
for EKF, since this estimator relies heavily on prior information. These considerations tend
to validate Hypothesis 5.

Additional Chapter : Finally, Chapter 8 presented some results on static anchor place-
ment knowing a prior distribution of the tags. We developed an algorithm based on simu-
lated annealing to initially deploy the anchors on a coarse mesh to cover the workspace with
a minimum level of localizability. Then, a local policy based on stochastic gradient descent
optimized an average localizability criterion based on BCRLB. This algorithm was tested on
a three dimensional simulated scenario. The simulations presented in this last chapter have
shown a strong improvement in the localizability of the tags for a moderate computational
cost, which tends to validate the Hypothesis 6 in this use case.



141

In Table 9.1, we have summarized the different contributions of this thesis and their cor-
responding chapters. In this table, the research axes are highlighted with their respective
colors, i.e., 1 (red); 2 (green); 3 (blue).

Table 9.1: Summary of the contributions made during the thesis with their respective vali-
dations

Chapter Main Contributions Validation
4 i. UWB Bias calibration using simple syn-

chronization and RxP based method;
ii. Enhancement of the SSTWR protocol.

Calibration maps taken in several
locations;
Measurement precision strongly
enhanced.

5 i. Connection between localizability and
rigidity theory;
ii. FIM invertibility theorem;
iii. Distributed localizability potential opti-
mization schemes;
iv. Extension of localizability for multi-
sensor robots.

Large-scale simulation;
Real-time implementation on a
ground MRS.

6 i. CRLB formulation for RMs (angles and
distances) with distance dependent variance.

Experiment with a UGV for
a relative-position constrained
CRLB (robot carrying multiple
UWB sensors).

7 i. BCRLB formulation for Gaussian prior
and measurement PDFs;
ii. Real-time optimizer of the BCRLB.

Real-time optimization of both
CRLB and BCRLB for an MRS
with a fixed anchor.

8 i. Static anchor deployment algorithm opti-
mizing the localizability of tags, having ac-
cess to a prior PDF and range-deteriorated
distance measurements.

Simulated scenario.
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CHAPTER 10 CONCLUSION AND RECOMMENDATIONS

“Un être qui pense c’est un être qui doute.”

– René Descartes (1596-1650)

This chapter concludes the manuscript by summarizing the work done during this thesis. We
then point out the limitations of our approach and recall the main assumptions made along
our work. Finally, we suggest some avenues for future research.

10.1 Summary of Works

In this thesis, we mathematically quantified using CRLBs the localizability of MRS localized
thanks to RMs. Then, we designed localizability cost functions based on the optimal design
of experiments. Moreover, we made connections between the infinitesimal rigidity theory and
the Fisher information for Gaussian or log-normal RMs. This allowed us to take advantage
of the results of decentralized rigidity formation control, which are well known in the field of
swarm robotics. Thanks to this, we proposed decentralized optimization schemes to provide
scalable deployment algorithms for large MRS.

We then extended the theoretical results to robots carrying multiple sensors, using Lagrangian-
based descent schemes and the CCRLB. We considered both known distances and known rel-
ative positions within the robots’ frames. We also addressed realism issues of the Gaussian
RMs model at long range, and proposed a version of the CRLB that accounts for distance
degradation of the measurements. Finally, using the BCRLB, we proposed deployment poli-
cies knowing prior information about the tag positions. The latter result was applied both
to place static anchors in a probabilistic MRS context and to maintain the localizability of a
robot using an EKF to navigate.

Along this thesis, we experimentally applied this paradigm of localizability to UWB range
measurements captured by ToF-based protocols. In order to provide an operational localiza-
tion system, we studied the main sources of error in this type of protocol. We first focused
on the calibration of systematic biases in LoS for ToF measurement, which violate a funda-
mental assumption of CRLB. Finally, we successfully adapted robust filtering techniques to
mitigate MP outliers indoors in an additional article.

The contributions made during this thesis lead to two IEEE/RAS peer-reviewed journal
articles in Robotics and four IEEE international conference papers (both in Robotics and
Signal Processing).
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10.2 Limitations

Here we describe the limitations of the work done during this thesis. First, its strongest
limitation is also the main assumption made to model localizability: the fact that the CRLB
is a proxy for the real estimator uncertainties. The CRLB is a theoretical minimum on the
covariance and there is no guarantee that “decreasing” it would improve the localizability
of the MRS if the probabilistic observation model being considered is not close enough to
the true observations. We can make it tighter to fit reasonable estimator performances by
adding constraints or prior information, but this fact harms the generalist nature of the local-
izability. In fact, additional information means making assumptions about the structure of
the estimators. Our approach, however, aimed to design general pre-computable deployment
criteria with a minimum assumption on the estimators.

In this thesis we mainly assumed that the measurements were Gaussian for the CRLB design,
but this standard model may not be appropriate for some types of sensors. In particular,
the clock drift was not modeled in the PDF of the RMs for ToF measurements, so the
synchronization was assumed to be perfect. Another limitation of the model is that our
extension focuses only on the range degradation of the measurements. In fact, even if the
RMs captured by RF sensors generally deteriorate with RxP and thus with distance, outliers
such as MP may occur at close range. For example, a wall next to a robot can distort
the signal, highlighting the fact that distance modeling of degradation remains a coarse
approximation.

Experimentally, our validation was limited by the thesis schedule and the equipment at our
disposal. We essentially validated the results of this thesis on UWB commercial transceivers
using the SSTWR protocol, which is a specific ranging method. Also, the UWB boards
used to capture the RMs were not able to perform angle measurements, limiting our scope of
protocols. We also used a UGV swarm to test the algorithms, leaving another implementation
on UAVs for future research.

The deployment policies given in this thesis are computationally expensive, and this fact is
exacerbated as the number of robots N involved in the MRS increases. In fact, the structure
of the adjacency matrix, especially its sparsity, plays a crucial role in the complexity of the
optimization program. However, these concerns are beyond the scope of this work and are
left for future work.
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10.3 Future Research

Future research will include trajectory planning under localizability constraint leveraging
the RBCRLB. Indeed, this mathematical tool allows to predict state propagation and can be
useful to compute paths between two points while maintaining localizability through dynamic
programming based method. However, since this problem is computationally demanding, a
practical implementation necessarily requires heuristics to spare operations. In addition, a
research avenue including synchronization terms in the localizability could be of great interest,
since the family of BCRLBs (including the RBCRLB) can track dynamic problems. It might
also be interesting to map the MP perturbations in a robot workspace in real time (as in
the Simultaneous Location And Mapping, SLAM protocol) in order to further output optimal
localizability trajectories.

To complete the preliminary results of Chapter 8, future work will include static anchor
deployment for other types of RMs, such as angle or RSS-based measurements. In addition,
more challenging scenarios using more sophisticated PDFs will be performed, in particular
for UGV navigation in environments with complex geometries such as logistic warehouses.

On the experimental side, a more comprehensive validation of the deployment schemes for
UWB could be undertaken, including MRS involving UAVs, angle measurements (e.g. AoA),
other ToF-based ranging protocols such as DSTWR, ToA or TDoA. In addition, future work
on indoor deployment may include Bluetooth technology, which is promising for low-cost
applications.
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