Justin Cano, Corentin Chauffaut, Eric Chaumette, Gaël Pagès and Jérôme Le Ny
Paper (2022)
An external link is available for this itemDepartment: | Department of Electrical Engineering |
---|---|
Research Center: | GERAD - Research Group in Decision Analysis |
PolyPublie URL: | https://publications.polymtl.ca/52440/ |
Conference Title: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) |
Conference Location: | Kyoto, Japan |
Conference Date(s): | 2022-10-23 - 2022-10-27 |
Publisher: | IEEE |
DOI: | 10.1109/iros47612.2022.9981427 |
Official URL: | https://doi.org/10.1109/iros47612.2022.9981427 |
Date Deposited: | 18 Apr 2023 14:58 |
Last Modified: | 05 Apr 2024 11:57 |
Cite in APA 7: | Cano, J., Chauffaut, C., Chaumette, E., Pagès, G., & Le Ny, J. (2022, October). Maintaining Robot Localizability with Bayesian Cramer-Rao Lower Bounds [Paper]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Kyoto, Japan. https://doi.org/10.1109/iros47612.2022.9981427 |
---|---|
Statistics
Dimensions