<  Back to the Polytechnique Montréal portal

Maintaining Robot Localizability with Bayesian Cramer-Rao Lower Bounds

Justin Cano, Corentin Chauffaut, Eric Chaumette, Gaël Pagès and Jérôme Le Ny

Paper (2022)

An external link is available for this item
Department: Department of Electrical Engineering
Research Center: GERAD - Research Group in Decision Analysis
PolyPublie URL: https://publications.polymtl.ca/52440/
Conference Title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022)
Conference Location: Kyoto, Japan
Conference Date(s): 2022-10-23 - 2022-10-27
Publisher: IEEE
DOI: 10.1109/iros47612.2022.9981427
Official URL: https://doi.org/10.1109/iros47612.2022.9981427
Date Deposited: 18 Apr 2023 14:58
Last Modified: 05 Apr 2024 11:57
Cite in APA 7: Cano, J., Chauffaut, C., Chaumette, E., Pagès, G., & Le Ny, J. (2022, October). Maintaining Robot Localizability with Bayesian Cramer-Rao Lower Bounds [Paper]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Kyoto, Japan. https://doi.org/10.1109/iros47612.2022.9981427

Statistics

Dimensions

Repository Staff Only

View Item View Item