<  Retour au portail Polytechnique Montréal

Conception d'un réseau de plots configurables multifonctions analogiques et numériques combiné à un réseau de distribution de puissance intégrés à l'échelle de la tranche de silicium

Nicolas Laflamme-Mayer

Thèse de doctorat (2018)

[img] Accès restreint: Personnel autorisé jusqu'au 26 juin 2019.
Citer ce document: Laflamme-Mayer, N. (2018). Conception d'un réseau de plots configurables multifonctions analogiques et numériques combiné à un réseau de distribution de puissance intégrés à l'échelle de la tranche de silicium (Thèse de doctorat, École Polytechnique de Montréal). Tiré de https://publications.polymtl.ca/3102/
Afficher le résumé Cacher le résumé

Résumé

RÉSUMÉ De nos jours, les systèmes électroniques sont en constante croissance en taille et en complexité. Cette complexité combinée à la réduction du temps de mise en marché rendant le design de systèmes électroniques un grand défi pour les designers. Une plateforme de prototypage a récemment été introduite afin de s’attaquer toutes ces contraintes à la fois. Cette plateforme s’appuie sur l’implémentation d’un circuit configurable à l’échelle d’une tranche de silicium complète de 200mm de diamètre. Cette surface est recouverte d’une mer de plots conducteurs configurables appelés NanoPads. Ces NanoPads sont suffisamment petits pour supporter des billes d’un diamètre de 250 μm et d’un espacement de 500 μm et sont regroupés en matrices de 4×4 pour former des Cellules, qui sont à leur tour assemblées en Réticules de 32×32. Ces Réticules sont ensuite photo-répétés sur toute la surface d’une tranche de silicium et sont interconnectés entre eux pour former le WaferIC. Cet arrangement particulier de plots conducteurs configurables permet à un usager de déposer sur la surface active du WaferIC les circuits intégrés constituant un système électronique, sans tenir en compte l’orientation spatiale de ces derniers, de créer un schéma d’interconnexions, de distribution la puissance et de débuter le prototypage du système en question. Une version préliminaire a été fabriquées et testées avec succès et permet d’alimenter des circuits -intégrés et de configurer le WaferIC pour les interconnecter. Cette thèse par articles présente une nouvelle version du WaferIC avec une nouvelle proposition de distribution de la puissance avec une approche de maîtres-esclaves qui met en valeur l’utilisation de plusieurs rails d’alimentation afin d’améliorer le rendement énergétique. Il est également mis de l’avant un réseau très dense de convertisseurs analogique-numérique (CAN) et numérique-analogique (CNA) de plus de 300k éléments, tolérant aux défectuosités et aux défauts de fabrication. Ce réseau de CAN-CNA permet d’améliorer le WaferIC avec la transmission de signaux analogiques, en plus des signaux numériques. Ce manuscrit comporte trois articles : un publié chez « Springer Science & Business Media Analog Integrated Circuits and Signal Processing », un publié chez « IEEE Transactions on Circuits and Systems I : Regular Papers » et finalement un soumis chez « IEEE Transactions on Very Large Scale Integration ».----------ABSTRACT Nowadays, electronic systems are in constant growth, size and complexity; combined with time to market it makes a challenge for electronic system designers. A prototyping platform has been recently introduced and addresses all those constraints at once. This platform is based on an active 200 mm in diameter wafer-scale circuit, which is covered with a set of small configurable and conductive pads called NanoPads. These NanoPads are designed to be small enough to support any integrated-circuit μball of a 250 μm diameter and 500 μm of pitch. They are assembled in a 4×4 matrix, forming a Unit-Cell, which are grouped in a Reticle-Image of 32×32. These Reticle-Images are photo-repeated over the entire surface of a 200 mm in diameter wafer and are interconnected together using interreticle stitching. This active wafer-scale circuit is called a WaferIC. This particular topology and distribution of NanoPads allows an electronic system designer to manually deposit any integrated-circuit (IC) on the active alignment insensitive surface of the WaferIC, to build the netlist linking all the ICs, power-up the systems and start the prototyping of the system. In this manuscript-based thesis, we present an improved version of the WaferIC with a novel approach for the power distribution network with a master-slave topology, which makes the use of embedded dual-power-rail voltage regulators in order to improve the power efficiency and decrease thermal dissipation. We also propose a default-tolerant network of analog to digital (ADC) and digital to analog (DAC) converters of more than 300k. This ADC-DAC network allows the WaferIC to not only support digital ICs but also propagate analog signals from one NanoPad to another. This thesis includes 3 papers : one submission to "Springer Science & Business Media Analog Integrated Circuits and Signal Processing", one submission to "IEEE Transactions on Circuits and Systems I : Regular Papers" and finally one submission to "IEEE Transactions on Very Large-Scale Integration". These papers propose novel architectures of dualrail voltage regulators, configurable analog buffers and configurable voltage references, which can be used as a DAC. A novel approach for a power distribution network and the integration of all the presented architectures is also proposed with the fabrication of a testchip in CMOS 0.18 μm technology, which is a small-scale version of the WaferIC.

Document en libre accès dans PolyPublie
Département: Département de génie électrique
Directeur de mémoire/thèse: Mohamad Sawan et Yves Blaquière
Date du dépôt: 03 juil. 2018 15:49
Dernière modification: 24 oct. 2018 16:13
Adresse URL de PolyPublie: https://publications.polymtl.ca/3102/

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel