<  Back to the Polytechnique Montréal portal

Items where Author is "Nikanjam, Amin"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Jump to: D | J | M | N | O | R | S | T
Number of items: 13.

D

Dakhel, A. M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M. C., & Jiang, Z. M. (.J.K. ). (2023). GitHub Copilot AI pair programmer: Asset or Liability? Journal of Systems and Software, 203, 111734 (23 pages). External link

J

Jamshidi, S., Nikanjam, A., Hamdaqa, M. A., & Khomh, F. (2023). Attack Detection by Using Deep Learning for Cyber-Physical System. In Artificial Intelligence for Cyber-Physical Systems Hardening (155-179). External link

M

Morovati, M. M., Nikanjam, A., Khomh, F., & Jiang, Z. M. (2023). Bugs in machine learning-based systems: a faultload benchmark. Empirical Software Engineering, 28(3), 33 pages. External link

Mahdavimoghadam, M., Nikanjam, A., & Abdoos, M. (2022). Improved reinforcement learning in cooperative multi-agent environments using knowledge transfer. Journal of Supercomputing, 25 pages. External link

Mindom, P. S. N., Nikanjam, A., Khomh, F., & Mullins, J. (2021, December). On Assessing The Safety of Reinforcement Learning algorithms Using Formal Methods [Paper]. 21st International Conference on Software Quality, Reliability and Security (QRS 2021), Hainan, China. External link

N

Nikanjam, A., Ben Braiek, H., Morovati, M. M., & Khomh, F. (2022). Automatic Fault Detection for Deep Learning Programs Using Graph Transformations. ACM Transactions on Software Engineering and Methodology, 31(1), 14 (27 pages). External link

Nikanjam, A., Morovati, M. M., Khomh, F., & Ben Braiek, H. (2022). Faults in deep reinforcement learning programs: a taxonomy and a detection approach. Automated Software Engineering, 29(1), 8 (32 pages). External link

O

Openja, M., Nikanjam, A., Yahmed, A. H., Khomh, F., & Jiang, Z. M. J. (2022, October). An Empirical Study of Challenges in Converting Deep Learning Models [Paper]. 39th IEEE International Conference on Software Maintenance and Evolution (ICSME 2022), Limassol, Cyprus. External link

R

Roy, S., Laberge, G., Roy, B., Khomh, F., Nikanjam, A., & Mondal, S. (2022, October). Why Don't XAI Techniques Agree? Characterizing the Disagreements Between Post-hoc Explanations of Defect Predictions [Paper]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2022), Limassol, Cyprus. External link

Rivera-Landos, E., Khomh, F., & Nikanjam, A. (2021, December). The Challenge of Reproducible ML: An Empirical Study on The Impact of Bugs [Paper]. 21st International Conference on Software Quality, Reliability and Security (QRS 2021), Hainan, China. External link

S

Shajoonnezhad, N., & Nikanjam, A. (2022). A stochastic variance-reduced coordinate descent algorithm for learning sparse Bayesian network from discrete high-dimensional data. International Journal of Machine Learning and Cybernetics, 12 pages. External link

T

Tambon, F., Majfinasab, V., Nikanjam, A., Khomh, F., & Antoniol, G. (2023, April). Mutation testing of deep reinforcement learning based on real faults [Paper]. 16th IEEE Conference on Software Testing, Verification and Validation (ICST 2023), Dublin, Ireland. External link

Tambon, F., Laberge, G., An, L., Nikanjam, A., Mindom, P. S. N., Pequignot, Y., Khomh, F., Antoniol, G., Merlo, E., & Laviolette, F. (2022). How to certify machine learning based safety-critical systems? A systematic literature review. Automated Software Engineering, 29(2). External link

List generated on: Sun Sep 24 07:57:28 2023 EDT