Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Mlika, Z., Do, T. N., Larabi, A., Vo, J. D., Frigon, J.-F., & Leduc-Primeau, F. (octobre 2024). Online energy-efficient beam bandwidth partitioning in mmwave mobile networks [Communication écrite]. IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA (6 pages). Lien externe
Hojatian, H., Mlika, Z., Nadal, J., Frigon, J.-F., & Leduc-Primeau, F. (2024). Learning energy-efficient transmitter configurations for massive MIMO beamforming. IEEE Transactions on Machine Learning in Communications and Networking, 2, 939-955. Disponible
Filali, A., Mlika, Z., & Cherkaoui, S. (2024). Open RAN Slicing for MVNOs With Deep Reinforcement Learning. IEEE Internet of Things Journal, 3365665 (15 pages). Lien externe
Triwinarko, A., Mlika, Z., Cherkaoui, S., & Dayoub, I. (octobre 2022). Deep Reinforcement Learning to Improve Vehicle-to-Vulnerable Road User Communications in C-V2X [Communication écrite]. 8th International Symposium on ubiquitous Networking (UNeT 2022), Montreal, Qc, Canada. Lien externe
Mlika, Z., Cherkaoui, S., Laprade, J. F., & Corbeil-Letourneau, S. (2023). User trajectory prediction in mobile wireless networks using quantum reservoir computing. IET Quantum Communication, 4(3), 125-135. Disponible
Taik, A., Mlika, Z., & Cherkaoui, S. (2022). Clustered Vehicular Federated Learning: Process and Optimization. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25371-25383. Lien externe
Taïk, A., Mlika, Z., & Cherkaoui, S. (2022). Data-Aware Device Scheduling for Federated Edge Learning. IEEE Transactions on Cognitive Communications and Networking, 8(1), 408-421. Lien externe
Mlika, Z., & Cherkaoui, S. (2022). Deep deterministic policy gradient to minimize the age of information in cellular V2X communications. IEEE Transactions on Intelligent Transportation Systems, 23(12), 23597-23612. Lien externe
Moudoud, H., Mlika, Z., Khoukhi, L., & Cherkaoui, S. (2022). Detection and Prediction of FDI Attacks in IoT Systems via Hidden Markov Model. IEEE Transactions on Network Science and Engineering, 9(5), 2978-2990. Lien externe
Filali, A., Mlika, Z., Cherkaoui, S., & Kobbane, A. (2022). Dynamic SDN-based radio access network slicing with deep reinforcement learning for URLLC and eMBB services. IEEE Transactions on Network Science and Engineering, 9(4), 2174-2187. Lien externe
Hentati, A., Mlika, Z., Frigon, J.-F., & Ajib, W. (avril 2022). Energy Harvesting Wireless Sensor Networks: Inter-delivery-aware Scheduling Algorithms [Communication écrite]. 2022 IEEE Wireless Communications and Networking Conference (WCNC 2022), Austin, TX, USA. Lien externe
Nour, B., Cherkaoui, S., & Mlika, Z. (2022). Federated Learning and Proactive Computation Reuse at the Edge of Smart Homes. IEEE Transactions on Network Science and Engineering, 9(5), 3045-3056. Lien externe
Abouaomar, A., Cherkaoui, S., Mlika, Z., & Kobbane, A. (2022). Service Function Chaining in MEC: A Mean-Field Game and Reinforcement Learning Approach. IEEE Systems Journal, 16(4), 5357-5368. Lien externe
Mlika, Z., & Cherkaoui, S. (juin 2021). Competitive Algorithms and Reinforcement Learning for NOMA in IoT Networks [Communication écrite]. IEEE International Conference on Communications (ICC 2021), Montreal, Qc, Canada (6 pages). Lien externe
Abouaomar, A., Mlika, Z., Filali, A., Cherkaoui, S., & Kobbane, A. (octobre 2021). A Deep Reinforcement Learning Approach for Service Migration in MEC-enabled Vehicular Networks [Communication écrite]. 46th IEEE Conference on Local Computer Networks (LCN 2021), Edmonton, Alberta, Canada. Lien externe
Mlika, Z., & Cherkaoui, S. (2021). Massive IoT Access with NOMA in 5G Networks and Beyond using Online Competitiveness and Learning. IEEE Internet of Things Journal, 8(17), 13624-13639. Lien externe
Abouaomar, A., Cherkaoui, S., Mlika, Z., & Kobbane, A. (décembre 2021). Mean-field game and reinforcement learning MEC resource provisioning for SFC [Communication écrite]. IEEE Global Communications Conference (IEEE GLOBAL 2021), Madrid, Spain. Lien externe
Mlika, Z., & Cherkaoui, S. (2021). Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach. Lien externe
Mlika, Z., & Cherkaoui, S. (2021). Network Slicing with MEC and Deep Reinforcement Learning for the Internet of Vehicles. IEEE Network, 35(3), 132-138. Lien externe
Abouaomar, A., Cherkaoui, S., Mlika, Z., & Kobbane, A. (2021). Resource Provisioning in Edge Computing for Latency Sensitive Applications. IEEE Internet of Things Journal, 8(14), 11088-11099. Lien externe
Filali, A., Mlika, Z., Cherkaoui, S., & Kobbane, A. (2020). Preemptive SDN Load Balancing with Machine Learning for Delay Sensitive Applications. IEEE Transactions on Vehicular Technology, 69(12), 15947-15963. Lien externe
Mlika, Z., Ajib, W., Jaafar, W., & Haccoun, D. (septembre 2012). On the performance of relay selection in cognitive radio networks [Communication écrite]. 76th IEEE Vehicular Technology Conference, VTC Fall 2012, Québec City, QC, Canada. Lien externe