Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Dupuis, A., Dadouchi, C., & Agard, B. (2023, July). Digital Technologies and Emotions: Spectrum of Worker Decision Behavior Analysis [Paper]. 20th IFIP WG 5.1 International Conference on Product Lifecycle Management (PLM 2023), Montreal, QC, Canada. External link
Dupuis, A., Dadouchi, C., & Agard, B. (2023). Methodology for multi-temporal prediction of crop rotations using recurrent neural networks. Smart Agricultural Technology, 4, 100152 (13 pages). Available
Dupuis, A., Dadouchi, C., & Agard, B. (2023). Performances of a Seq2Seq-LSTM methodology to predict crop rotations in Québec. Smart Agricultural Technology, 4, 100180 (12 pages). Available
Dupuis, A., Dadouchi, C., & Agard, B. (2023). A decision support system for sequencing production in the manufacturing industry. Computers & Industrial Engineering, 185, 109686 (14 pages). External link
Dupuis, A., Dadouchi, C., Agard, B., & Pellerin, R. (2022, November). Forecasting future product sequences to be processed in tire production using deep learning technique [Paper]. International Conference on ENTERprise Information Systems (CENTERIS 2022), Lisbon, Portugal. Published in Procedia Computer Science, 219. External link
Dupuis, A., Dadouchi, C., & Agard, B. (2023, June). Technologies numériques et émotions : spectre d'analyse du comportement décisionnel des travailleurs [Paper]. CIGI Qualita MOSIM 2023, Trois-Rivières, Qc, Canada (7 pages). External link
Dadouchi, C., Agard, B., & Montreuil, B. (2022). Context-Aware Interactive Knowledge-Based Recommendation. SN Computer Science, 3(6), 14 pages. External link
Dupuis, A., Dadouchi, C., & Agard, B. (2022). Predicting crop rotations using process mining techniques and Markov principals. Computers and Electronics in Agriculture, 194, 106686 (16 pages). External link
Dadouchi, C., & Agard, B. (2021). Recommender systems as an agility enabler in supply chain management. Journal of Intelligent Manufacturing, 32(5), 1229-1248. External link
Dadouchi, C., & Agard, B. (2020, April). Considering quasi-real time delivery information in product recommendation [Paper]. 8th International Conference on Information Systems, Logistics and Supply Chain: Interconnected Supply Chains in an Era of Innovation (ILS 2020), Austin, TX. Unavailable
Dadouchi, C. (2019). Intégration de contraintes industrielles dans la recommandation de produits pour la prise en compte de la capacité à répondre à la demande [Ph.D. thesis, Polytechnique Montréal]. Available
Dadouchi, C., Agard, B., & Montreuil, B. (2019, June). Recommandation interactive, une solution au démarrage à froid [Paper]. 13e Congrès international de génie industriel (CIGI 2019), Montréal, Québec, Canada. Unavailable
Dadouchi, C., & Agard, B. (2018). Lowering penalties related to stock-outs by shifting demand in product recommendation systems. Decision Support Systems, 114, 61-69. External link
Dadouchi, C., & Agard, B. (2017, May). État de l'art sur les systèmes de recommandation [Paper]. 12e Congrès international de génie industriel (GI 2017), Compiègne, France. Unavailable
Dadouchi, C., Ducharme, C., & Agard, B. (2016, August). L'utilisation des SIG comme outil d'aide à la décision d'expansion commerciale: une étude de cas aux détaillants d'alcool à Laval [Paper]. 11e Conférence Francophone d'Optimisation et Simulation (MOSIM), Montréal, Québec. Unavailable
Ferguene, M., Lehoux, N., & Dadouchi, C. (2023). Forecasting models for Quebecs lumber demand and exports using multivariate regression technique. Forestry Chronicle, 99(1), 103-116. External link
Hajli, K., Rönnqvist, M., Dadouchi, C., Audy, J.-F., Cordeau, J.-F., Warya, G., & Ngo, T. (2024). A fuel consumption prediction model for ships based on historical voyages and meteorological data. Journal of Marine Engineering & Technology, 2371192 (12 pages). External link
Hajli, K., Ronnqvist, M., Cordeau, J.-F., Audy, J.-F., Dadouchi, C., Warya, G., & Ngo, T. (2023, June). Fuel consumption prediction models for different types of bulk carriers based on historical voyages, meteorological data vessel characteristics [Paper]. CIGI Qualita MOSIM 2023, Trois-Rivières, Qc, Canada (7 pages). External link
Puech, L., Dupuis, A., Dadouchi, C., & Pellerin, R. (2024, July). Applied Data Analytics Approach for Defect Root Causes Analysis in Manufacturing: The Case of Multi-Product Assembly Lines [Paper]. 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC 2024), Osaka, Japan. External link