<  Back to the Polytechnique Montréal portal

Forecasting future product sequences to be processed in tire production using deep learning technique

Ambre Dupuis, Camélia Dadouchi, Bruno Agard and Robert Pellerin

Paper (2022)

An external link is available for this item
Department: Department of Mathematics and Industrial Engineering
Research Center: LID - Laboratoire en intelligence des données
PolyPublie URL: https://publications.polymtl.ca/54099/
Conference Title: International Conference on ENTERprise Information Systems (CENTERIS 2022)
Conference Location: Lisbon, Portugal
Conference Date(s): 2022-11-09 - 2022-11-11
Journal Title: Procedia Computer Science (vol. 219)
Publisher: Elsevier
DOI: 10.1016/j.procs.2023.01.300
Official URL: https://doi.org/10.1016/j.procs.2023.01.300
Date Deposited: 10 Jul 2023 16:30
Last Modified: 25 Sep 2024 16:45
Cite in APA 7: Dupuis, A., Dadouchi, C., Agard, B., & Pellerin, R. (2022, November). Forecasting future product sequences to be processed in tire production using deep learning technique [Paper]. International Conference on ENTERprise Information Systems (CENTERIS 2022), Lisbon, Portugal. Published in Procedia Computer Science, 219. https://doi.org/10.1016/j.procs.2023.01.300

Statistics

Dimensions

Repository Staff Only

View Item View Item