Katherine J. I. Ember, Nassim Ksantini, Frédérick Dallaire, Guillaume Sheehy, Trang Tran, Mathieu Dehaes, Madeleine Durand, Dominique Trudel et Frédéric Leblond
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale (CC BY-NC) Télécharger (1MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale (CC BY-NC) Télécharger (1MB) |
Abstract
With greater population density, the likelihood of viral outbreaks achieving pandemic status is increasing. However, current viral screening techniques use specific reagents, and as viruses mutate, test accuracy decreases. Here, we present the first real-time, reagent-free, portable analysis platform for viral detection in liquid saliva, using COVID-19 as a proof-of-concept. We show that vibrational molecular spectroscopy and machine learning (ML) detect biomolecular changes consistent with the presence of viral infection. Saliva samples were collected from 470 individuals, including 65 that were infected with COVID-19 (28 from hospitalized patients and 37 from a walk-in testing clinic) and 251 that had a negative polymerase chain reaction (PCR) test. A further 154 were collected from healthy volunteers. Saliva measurements were achieved in 6 minutes or less and led to machine learning models predicting COVID-19 infection with sensitivity and specificity reaching 90%, depending on volunteer symptoms and disease severity. Machine learning models were based on linear support vector machines (SVM). This platform could be deployed to manage future pandemics using the same hardware but using a tunable machine learning model that could be rapidly updated as new viral strains emerge.
Renseignements supplémentaires: |
This article is part of the themed collection: 150th Anniversary Collection: Raman Spectroscopy and SERS (https://pubs.rsc.org/en/journals/articlecollectionlanding?sercode=an&themeid=6eda169a-7038-4bc9-81b8-325e58db0f68) ; To obtain anonymized samples, images, or processed Raman spectra, please contact Frederic Leblond directly. Code repository for model training, analysis and validation is publicly available in the paper and also on Github (https://github.com/mr-sheg/orpl). |
---|---|
Sujet(s): | 3100 Physique > 3100 Physique |
Département: | Département de génie physique |
Organismes subventionnaires: | Canadian Foundation for Innovation, NSERC / CRSNG, Fonds de Recherche du Québec – Santé (FRQS), TransMedTech Institute, Institut de Valorisation des Données (IVADO) |
URL de PolyPublie: | https://publications.polymtl.ca/59638/ |
Titre de la revue: | The Analyst (vol. 149, no 22) |
Maison d'édition: | The Royal Society of Chemistry |
DOI: | 10.1039/d4an00729h |
URL officielle: | https://doi.org/10.1039/d4an00729h |
Date du dépôt: | 20 nov. 2024 09:18 |
Dernière modification: | 22 déc. 2024 03:54 |
Citer en APA 7: | Ember, K. J. I., Ksantini, N., Dallaire, F., Sheehy, G., Tran, T., Dehaes, M., Durand, M., Trudel, D., & Leblond, F. (2024). Liquid saliva-based Raman spectroscopy device with on-board machine learning detects COVID-19 infection in real-time. The Analyst, 149(22), 5535-5545. https://doi.org/10.1039/d4an00729h |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions