Chloé Bourquin, Jonathan Porée, Brice Rauby, Vincent Gaël Perrot, Nin Ghigo, Hatim Belgharbi, Samuel Bélanger, Gerardo Ramos-Palacios, Nelson Cortes, Hugo Ladret, Lamyae Ikan, Christian Casanova, Frédéric Lesage et Jean Provost
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
A rise in blood flow velocity variations (i.e. pulsatility) in the brain, caused by the stiffening of upstream arteries, is associated with cognitive impairment and neurodegenerative diseases. The study of this phenomenon requires brain-wide pulsatility measurements, with large penetration depth and high spatiotemporal resolution. The development of dynamic ultrasound localization microscopy (DULM), based on ULM, has enabled pulsatility measurements in the rodent brain in 2D. However, 2D imaging accesses only one slice of the brain and measures only 2D-projected and hence biased velocities . Herein, we present 3D DULM: using a single ultrasound scanner at high frame rate (1000–2000 Hz), this method can produce dynamic maps of microbubbles flowing in the bloodstream and extract quantitative pulsatility measurements in the cat brain with craniotomy and in the mouse brain through the skull, showing a wide range of flow hemodynamics in both large and small vessels. We highlighted a decrease in pulsatility along the vascular tree in the cat brain, which could be mapped with ultrasound down to a few tens of micrometers for the first time. We also performed an intra-animal validation of the method by showing consistent measurements between the two sides of the Willis circle in the mouse brain. Our study provides the first step towards a new biomarker that would allow the detection of dynamic abnormalities in microvessels in the brain, which could be linked to early signs of neurodegenerative diseases.
Mots clés
dynamic ultrasound localization microscopy; 3D brain imaging; pulsatility index; Kalman filtering
Renseignements supplémentaires: | Matériel supplémentaire disponible en ligne (2 vidéos) |
---|---|
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale 2500 Génie électrique et électronique > 2500 Génie électrique et électronique 3100 Physique > 3100 Physique |
Département: |
Département de génie électrique Département de génie physique |
Organismes subventionnaires: | NSERC / CRSNG, Institute for Data Valorization (IVADO), Canada Foundation for Innovation, Canadian Institutes of Health Research (CIHR), New Frontiers in Research Fund, TransMedTech Institute, Fonds de recherche du Québec - Nature et technologies, Quebec Bio-Imaging Network, Canada First Research Excellence Fund (Apogée/CFREF), Calcul Québec, Digital Research Alliance of Canada |
Numéro de subvention: | 38095, 452530, NFRFE-2018–01312, RGPIN2019–04982 |
URL de PolyPublie: | https://publications.polymtl.ca/57387/ |
Titre de la revue: | Physics in Medicine and Biology (vol. 69, no 4) |
Maison d'édition: | IOP Publishing Ltd |
DOI: | 10.1088/1361-6560/ad1b68 |
URL officielle: | https://doi.org/10.1088/1361-6560/ad1b68 |
Date du dépôt: | 28 févr. 2024 14:05 |
Dernière modification: | 01 oct. 2024 12:41 |
Citer en APA 7: | Bourquin, C., Porée, J., Rauby, B., Perrot, V. G., Ghigo, N., Belgharbi, H., Bélanger, S., Ramos-Palacios, G., Cortes, N., Ladret, H., Ikan, L., Casanova, C., Lesage, F., & Provost, J. (2024). Quantitative pulsatility measurements using 3D dynamic ultrasound localization microscopy. Physics in Medicine and Biology, 69(4), 045017 (14 pages). https://doi.org/10.1088/1361-6560/ad1b68 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions