Océane Destras, Sébastien Le Beux, Felipe Gohring de Magalhaes et Gabriela Nicolescu
Article de revue (2024)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Partage dans les mêmes conditions (CC BY-NC-SA) Télécharger (3MB) |
Abstract
Integrated photonics arises as a fast and energy-efficient technology for the implementation of artificial neural networks (ANNs). Indeed, with the growing interest in ANNs, photonics shows great promise to overcome current limitations of electronic-based implementation. For example, it has been shown that neural networks integrating optical matrix multiplications can potentially run two orders of magnitude faster than their electronic counterparts. However, the transposition in the optical domain of the activation functions, which is a key feature of ANNs, remains a challenge. There is no direct optical implementation of state-of-the-art activation functions. Currently, most designs require time-consuming and power-hungry electro-optical conversions. In this survey, we review both all-optical and opto-electronic activation functions proposed in the state-of-the-art. We present activation functions with their key characteristics, and we summarize challenges for their use in the context of all-optical neural networks. We then highlight research directions for the implementation of fully optical neural networks.
Mots clés
computing methodologies; neural networks; hardware; emerging optical and photonic technologies
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2700 Technologie de l'information > 2700 Technologie de l'information |
---|---|
Département: | Département de génie informatique et génie logiciel |
Centre de recherche: | Autre |
URL de PolyPublie: | https://publications.polymtl.ca/56690/ |
Titre de la revue: | ACM Computing Surveys (vol. 56, no 2) |
Maison d'édition: | Association for Computing Machinery |
DOI: | 10.1145/3607533 |
URL officielle: | https://doi.org/10.1145/3607533 |
Date du dépôt: | 23 janv. 2024 17:13 |
Dernière modification: | 01 févr. 2025 11:36 |
Citer en APA 7: | Destras, O., Le Beux, S., Gohring de Magalhaes, F., & Nicolescu, G. (2024). Survey on activation functions for optical neural networks. ACM Computing Surveys, 56(2), 35 (30 pages). https://doi.org/10.1145/3607533 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions