<  Retour au portail Polytechnique Montréal

An anatomically realistic simulation framework for 3D ultrasound localization microscopy

Hatim Belgharbi, Jonathan Porée, Rafat Damseh, Vincent Perrot, Léo Milecki, Patrick Delafontaine-Martel, Frédéric Lesage et Jean Provost

Article de revue (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Matériel supplémentaire
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (137kB)
Afficher le résumé
Cacher le résumé

Abstract

The resolution of 3D Ultrasound Localization Microscopy (ULM) is determined by acquisition parameters such as frequency and transducer geometry but also by microbubble (MB) concentration, which is linked to the total acquisition time needed to sample the vascular tree at different scales. In this study, we introduce a novel 3D anatomically-realistic ULM simulation framework based on two-photon microscopy (2PM) and in-vivo MB perfusion dynamics. As a proof of concept, using metrics such as MB localization error, MB count and network filling, we quantify the effect of MB concentration and PSF volume by varying probe transmit frequency (3-15 MHz). We found that while low frequencies can achieve sub-wavelength resolution as predicted by theory, they are also associated with prolonged acquisition times to map smaller vessels, thus limiting effective resolution (i.e., the smallest vessel that can be reconstructed). A linear relationship was found between the maximal MB concentration and the inverse of the point spread function (PSF) volume. Since inverse PSF volume roughly scales cubically with frequency, the reconstruction of the equivalent of 10 minutes at 15 MHz would require hours at 3 MHz. We expect that these findings can be leveraged to achieve effective reconstruction and serve as a guide for choosing optimal MB concentrations in ULM.

Matériel d'accompagnement:
Département: Département de génie électrique
Département de génie physique
Organismes subventionnaires: New Frontiers in Research Fund, Canada Foundation for Innovation, IVADO, Institut de Valorisation des Données, Institut TransMedTech, Canada Research Chairs
Numéro de subvention: 268556, 38095, MSc-2020-2751474113
URL de PolyPublie: https://publications.polymtl.ca/52318/
Titre de la revue: IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control (vol. 3)
Maison d'édition: IEEE
DOI: 10.1109/ojuffc.2023.3235766
URL officielle: https://doi.org/10.1109/ojuffc.2023.3235766
Date du dépôt: 18 avr. 2023 14:58
Dernière modification: 14 janv. 2026 10:16
Citer en APA 7: Belgharbi, H., Porée, J., Damseh, R., Perrot, V., Milecki, L., Delafontaine-Martel, P., Lesage, F., & Provost, J. (2023). An anatomically realistic simulation framework for 3D ultrasound localization microscopy. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 3, 13 pages. https://doi.org/10.1109/ojuffc.2023.3235766

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document