Nizar El Zarif, Leila Montazeri, François Leduc-Primeau et Mohamad Sawan
Article de revue (2021)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (3MB) |
Abstract
This paper presents two novel facial expression recognition techniques: the real-time ensemble for facial expression recognition (REFER) and the facial expression recognition network (FERNet). Both approaches can detect facial expressions from various poses, distances, angles, and resolutions, and both techniques exhibit high computational efficiency and portability. REFER outperforms the existing approaches in terms of cross-dataset accuracy, making it an ideal network to use on fresh data. FERNet is a compact convolutional neural network that uses both geometric and texture features to achieve up to 98% accuracy on the MUG dataset. Both approaches can process 14 frames per second (FPS) from a live video capture on a battery-powered Raspberry Pi 4
| Matériel d'accompagnement: | |
|---|---|
| Département: | Département de génie électrique |
| Centre de recherche: | IVADO - Institut de valorisation des données |
| Organismes subventionnaires: | NSERC, CMC Microsystems |
| URL de PolyPublie: | https://publications.polymtl.ca/49114/ |
| Titre de la revue: | IEEE Access (vol. 9) |
| Maison d'édition: | IEEE |
| DOI: | 10.1109/access.2021.3095844 |
| URL officielle: | https://doi.org/10.1109/access.2021.3095844 |
| Date du dépôt: | 18 avr. 2023 15:00 |
| Dernière modification: | 13 janv. 2026 01:06 |
| Citer en APA 7: | Zarif, N. E., Montazeri, L., Leduc-Primeau, F., & Sawan, M. (2021). Mobile-optimized facial expression recognition techniques. IEEE Access, 9, 101172-101185. https://doi.org/10.1109/access.2021.3095844 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
