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ABSTRACT This paper presents two novel facial expression recognition techniques: the real-time ensem-
ble for facial expression recognition (REFER) and the facial expression recognition network (FERNet).
Both approaches can detect facial expressions from various poses, distances, angles, and resolutions, and
both techniques exhibit high computational efficiency and portability. REFER outperforms the existing
approaches in terms of cross-dataset accuracy, making it an ideal network to use on fresh data. FERNet
is a compact convolutional neural network that uses both geometric and texture features to achieve up to
98% accuracy on the MUG dataset. Both approaches can process 14 frames per second (FPS) from a live
video capture on a battery-powered Raspberry Pi 4.

INDEX TERMS Facial expression recognition, machine learning, multithreaded, active shape model, pose-
invariant.

I. INTRODUCTION
There are seven essential and recognizable facial expressions
that do not require translators and can be understood across
cultures and languages. These seven emotions are anger,
neutral, fear, disgust, happiness, sadness, and surprise. Even
people who are blind from birth can express the correct
facial expressions without ever seeing them [1]. While facial
expressions can be understood relatively easily by humans,
they are challenging for machines because a facial expression
detection algorithm must be sensitive to small variations in
the face while being robust to changing environmental condi-
tions. In addition, humans tend to express emotions slightly
differently, which makes the problem even more difficult.
While other senses can be used to estimate emotions, such
as hearing, sight is the most accurate indicator of emotion.

Automatic facial expression detection has many beneficial
uses in human-computer interactions [2]. Its applications
extend to the gaming industry, commerce, medical field,
academics, or even personal use. For example, horror-based
video games can provide challenges, such as spawning new
enemies, based on the player’s fear level, which is dynam-
ically extracted from his/her facial expressions. In com-
merce, facial expression detection can also measure people’s
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reactions tomovies, food, advertisements, and clothing. In the
medical field, facial expression detection can help in person-
alized medicine, such as pain measurement [3], or rehabilita-
tion monitoring. It can also provide personalized stimulation
to complement a system that emulates retinal processing for
people with low vision [4]. In education, facial expression
detection can aid teachers by measuring the engagement of
online students in virtual classrooms. For personal use, facial
expression detection can be extended to tailor music to listen-
ers’ emotions or measure the drowsiness or responsiveness of
drivers to ensure their safety [5].

For facial expression recognition there are two high-level
approaches. The traditional approach relies on feature extrac-
tion using specific descriptors. This can be either texture,
geometric, hybrid, or generic features. Geometric features,
such as [6]–[10] have lower memory and computational
requirements, which makes them ideal for real-time applica-
tions. Texture features are significantlymore computationally
expensive than geometric features, but they provide a high
accuracy. Some of the more popular approaches can be seen
in [11]–[20]. Generic features [21], [22] use general-purpose
descriptors. They are relatively easy to implement and use
but are not as accurate or as fast as the geometric or texture
approaches. Hybrid features [23] are less common since they
require both geometry and texture at the same time, which
increases the complexity. The second high-level approach to
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facial expression recognition is to use deep neural networks
to skip feature extraction, since neural networks will learn the
features from data, as seen in [24]–[51]. This paper proposes
two approaches to facial expression recognition. The first is
based on the traditional geometric approach with a custom
scale and poses invariant descriptors with a fast implemen-
tation to ensure the best accuracy on fresh data with a high
real-time throughput. The other approach is a neural-network
approach with a simple feature extraction that ensures a high
accuracy on familiar data with a very fast and low latency
execution pipeline, which is ideal for real-time embedded
applications.

The remainder of the article is organized as follows.
We first review related works in Section II.
Then, Section III introduces the real-time ensemble

for facial expression recognition (REFER) technique, and
Section IV introduces the FERNet convolutional neural net-
work approach. Section V presents the accuracy and com-
plexity results for the two proposed algorithms and compares
them to the state of the art. Finally, Section VI concludes the
paper.

II. RELATED WORK
There are three steps in any facial expression recogni-
tion (FER) task: feature extraction, training, and testing. The
most crucial part of traditional approaches in FER is feature
extraction, as it determines which image points are the most
distinct for classification while being robust to variations in
the scene. A deep neural network can skip feature extraction
since the hidden layers in neural networks can detect abstract
features.

A. GEOMETRIC FEATURES
The geometric features are based on the face’s geometry.
Some of these features include the distances and angles
between different facial traits, the distance between themouth
and the chin, and the curvature of the mouth. Advances
in computer vision have allowed for the creation of the
active shape model (ASM) and the active appearance model
(AAM) [6]. In both approaches, several points across the
face are tracked in real time with a low overhead, such as
in [7], [8]. The greatest advantage of the geometric fea-
tures is that they tend to be computationally inexpensive
and memory-efficient due to their limited number, which is
important for real-time and embedded applications. However,
they are sensitive to scale and face orientation, which makes
them prone to registration errors [9]. Liu et al. [10] showed
that using a subset of the features can improve the detection
for one dataset, but at the cost of others. The two proposed
approaches solve the issue of both orientation and scale,
and greatly improve the detection of geometric features by
performing scaling on distances in real time.

B. TEXTURE FEATURES
The second type of feature extraction is based on texture
features, which use pixel intensity information of the face

to classify expressions. These features can capture smaller
face details, such as wrinkles and curves. Texture features
tend to require considerable memory due to the need to store
and process a large array of pixel data. In addition, textures
are illumination-dependent; hence, they suffer from uneven
lighting. The latter can be solved by using local texture
features instead of global features [11], [12]. Local binary
patterns [13] or Gabor wavelets [14] are two of the more
popular approaches for texture-based feature extraction, but
the latter can be memory and computationally expensive.
In [15], the authors used a principal component analysis and
template matching to achieve an accuracy that surpasses 99%
on personal images. However, with no cross-validation and
limited data, the method can be prone to overfitting and
requires previous facial and emotional knowledge. To com-
pute the local energy and distance based on the Symlet
wavelet with optical flow, researchers in [16] created an
unsupervised learning technique based on active contouring
and moving features, which obtained an accuracy of 87%
on the extended Cohn-Kanade (CK+) dataset [17]. In [18],
the authors extracted the region around the nose and the eyes
and used the LBP feature with weighted sum voting. They
obtained up to a 90% accuracy on the CK+ dataset and 78%
on the multimedia understanding group (MUG) dataset [52].
Generic features such as SURF have been used to describe
facial features and perform FER with a good accuracy of up
to 96% on theMUG dataset [21], [22]. 2D linear discriminant
analysis can also obtain a good detection rate [20],

C. HYBRID FEATURES
The third approach to feature extraction is based on hybrid
models, using both geometric and texture features. This
approach should give more accurate results than each feature
alone. In [23], the authors used hybrid features to obtain
an accuracy between 85% and 95% using the JAFFE and
CK+ datasets. However, execution speed is a considerable
drawback to this type of descriptor, as it requires storing
and processing both texture and geometric features and then
efficiently combining them to produce accurate results.

D. NEURAL NETWORKS
Neural networks are rapidly growing in popularity inmachine
learning since Alexnet won the ImageNet competition
in 2012 [24], [25]. Since then, many neural network-based
approaches have been introduced.

The authors of [26] proposed a mixture of geometric and
texture features by training both SVM and neural networks.
Their results showed a similar performance; however, neu-
ral networks tend to overfit the model. As a result, neural
networks can only classify the input dataset with a high
accuracy, but will underperform with new types of data.
Similarly, the authors of [27] used a convolutional neural net-
work (CNN) for facial expression detection, with a high accu-
racy, but their network underperforms during cross-validation
tests, which indicates overfitting. Recently, Sen et al. used
angles and LBP as geometric and texture features to achieve
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accuracies of 78% and 91.85% using the MUG and CK+
datasets, respectively [28].

The authors of [29] used a CNN along with the ensemble
method of voting to build and train the classifier. It resulted in
a decent EmotiW challenge result with an average of 61.29%
of the test set’s detection. Researchers in [30] introduced a
neural network for facial expression detection based on the
difference in the geometric features and the difference in
consecutive frames. They then combined both the temporal
and geometric features with an accuracy rate of 45.5% on
the CK+ dataset. Similarly, a CNN with different spatial and
temporal features that computes features based on changes
from the peak reaction was proposed in [31]. Using generic
feature extraction such as SIFT before passing it to a neural
network can give decent results, with an 80% accuracy on
BU-3DFE [32]. Deep convolutional neural networks can lead
to a high accuracy when validated on the same dataset [33].

The use of preprocessing image techniques, such as image
segmentation and histogram equalization, can increase the
accuracy by a few percentage points. Detection accuracy can
be improved by concatenating several features, or several
neural networks. The authors of [26] used autoencoders in
the first two layers to concatenate the texture and geometric
features in order to improve accuracy. In [34], the authors
merged VGG with ResNet 50 to produce an output slightly
better than both. Data augmentation has also been shown
to improve the detection rates [42]–[44]. For example, [44]
improved the accuracy by using rotations, translations, and
other transformations on the original images to augment the
size of the datasets.

The residual network, proposed in [35], is one of the most
popular networks for computer vision. Their network can
avoid the vanishing gradient problem with the deep net-
work. ResNet 34 has been used in multiple works to predict
facial expressions, such as in [36] and [37]. Other types of
residual networks are also used to detect facial expressions,
such as in [38], where a generative adversarial network is
used to generate features based on input images combined
with ResNet 50 for classification, and [39], which uses a
region attention network to extract features that are sent to
a ResNet 16 classifier. Most of the techniques based on
ResNet result in marginally better results on average, with
a trade-off in larger preprocessing steps. References [40]
and [41] used the VGG neural network to detect facial expres-
sions with a high accuracy, but VGG tends to be enormous
and requires a large amount of memory, which is not optimal
for performance- and memory-limited low-power devices.

Another approach to detecting facial expressions using
deep learning is to create a custom neural network. Build-
ing a custom neural network can be beneficial since it
allows us to tweak it to our intended use case, whether for
speed, accuracy, or temporal stability. CNNs can be used
to detect spatial features with a good accuracy, as seen
in [45], [47]–[49], while smaller networks can trade in some
accuracy to reduce the processing time [50], [51]. Another
approach is to use a long short-term memory (LSTM) neural

network to detect temporal features, such as in [46]. However,
this requires training and testing on a sequence of images
instead of one image at a time, and is more computationally
expensive than a similarly sized neural network.

E. OTHER FEATURES
Other features include advanced facial expression detectors
that use specialized sensors, such as 3D and thermal sensors
combined with normal cameras [53]. However, the reliance
on specialized hardware to augment the capability of an RGB
camera sensor makes the solution more expensive and less
universal than a simple camera.

III. THE REFER ALGORITHM
Unlike most of the previously mentioned approaches, the two
proposed techniques work in real time and are capable of
classifying emotions on-the-fly, not just in controlled envi-
ronments, such as the popular CK+ dataset. To highlight the
advantages of the proposed approaches, we ran them on our
own dataset [54] (see Section V-A for details) and on three
publicly available datasets: CK+, MUG, and KDEF [55].
Another drawback of the other FER techniques is that they are
usually optimized to work on individual datasets only and do
not generalize well to unfamiliar data sources [42]. The two
proposed approaches obtain significantly better results than
the state-of-the-art in that aspect.

REFER takes the geometric approach in facial expression
recognition to interpret human emotion. It works in real time
by using highly optimized computer vision libraries for face
landmark detection and our own simple but powerful descrip-
tors using logarithmic, distance, and orientation scaling. This
approach allows our algorithm to work with virtually any
resolution under different poses at variable distances from
the camera. Our approach is fast enough to work in real
time, even on low-cost mobile devices. Running in real time
is very important for the type of application that requires
instantaneous facial expression detection.

The typical automatic facial expression detection algo-
rithm using geometric features is shown in Figure 1. The two
most popular approaches for face detection are Viola-Jones
using Haar cascades [56] and local binary pattern (LBP) cas-
cades, with Viola-Jones offering a higher accuracy and LBP
requiring less computational power. Then, the key face points
are extracted from the detected face using ASM. After the key
point positions are extracted, the face descriptor is calculated
based on the distances between different key points. After
this point, the descriptors are either used to train the model
if the facial expression is known, or to infer if the model is
already trained. To train the model, we can either directly
use the expression or use the facial action coding system
(FACS), which codes the movement of individual features in
the face [57], [58].

References [59] and [60] used a similar structure to con-
struct their facial expression recognition system. The reported
maximum accuracy in [59] was 85%, while the reported
maximum accuracy in [60] was 80.9%. Reference [59]
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FIGURE 1. Typical workflow for automatic facial expression recognition
algorithm using geometric features. Initially, each frame is obtained from
stored pictures or videos; then, the image is converted from RGB to gray.
The face is then detected, and feature points are extracted. From these
data, the descriptor is typically calculated based on the distance or
angles. Finally, the descriptors are used either for training or to infer the
facial expression.

Algorithm 1 REFER Processing for One Video Frame
Input: Red, green, blue pixel matrices R, G, B
Output: P1,P2,. . .P7
K ← 0.299× R+ 0.587× G+ 0.114× B (1)
[F, (xc, yc)]← VJH(K ) (2)
L = width(F) (3)
{[x0, y0], [x1, y1], . . . , [x67, y67]} ← ASM(F) (4)

H = (x0−xc)2

(x16−xc)2
, (5)

V = (y27−y28)2

(y29−y28)2
, (6)

foreach local regionRi do // See Table 1
N = |Ri| (8)
x̃c←

∑N
n=0

xn
N , ỹc←

∑N
n=0

yn
N (9)

for n ∈ Ri do

d2n ←
(x̃c−xn)2+(ỹc−yn)2

L2
(11)

if xn ≤ x̃c then
d̃2n ← d2n × H

2 (13)

if yn ≤ ỹc then
d̃2n ← d̃2n × V

2 (15)

sn← log d̃2n (16)
pi← pSVM({sn : n ∈ Ri}) (17)

Vp = [p1, p2, . . . , p8] (18)
P ← pSVM(Vp) (19)

reported a maximum speed of 2.4 FPS on mobile hard-
ware. Reference [61] used an active appearance model with
head pose estimation and normalization to detect faces at
angles. REFER produces a higher accuracy rate in both
cross-validation tests and is significantly faster.

A. OVERVIEW OF REFER
The overall REFER algorithm requires an input colored
image K and outputs the detected facial expression. The
REFER algorithm is described in Algorithm 1. From
image K , we perform a few preprocessing steps described
in III-B. We then compute the local descriptors as shown
in III-C. After obtaining the local descriptors, we perform the

TABLE 1. The local region’s ASM points.

first round of local facial expression detection, from which
we compute the global descriptors and global output of the
algorithm, as seen in III-D. The result of the algorithm can
be adjusted based on the previous frame to provide stability
in the results in Section III-E. Finally, in III-F we show how
using AVFD works to provide significant performance gains
on computationally limited devices.

B. PRE-PROCESSING
To train or detect faces using REFER, we first have to obtain
the image frame, either from still images or from a live camera
feed. The image is then converted fromRGB to gray using the
popular equation given on line 1, whereK is the resulting gray
image, and R,G, B are the red, green, and blue pixel matrices,
respectively.We detect the face region using Viola-Jones with
Haar cascade features, denoted by [F, (xc, yc)] = VJH(K ),
which takes an image matrix K as the input and returns a new
image matrix F containing only the face area, as well as the
position (xc, yc) of the center of the face within the overall
image.

C. LOCAL DESCRIPTORS
Instead of using all ASM points as one set, we used these
points to create several subsets. Figure 2 shows how the
descriptors are extracted. The big green box is the face
detected using Viola-Jones. The yellow dots with numbers on
top are the face points detected using ASM with dlib. The
smaller blue boxes are manually added to show what points
each descriptor uses. We use 8 descriptors: one uses all the
key points, while the others are partial descriptors that cover
only one facial feature each. After calculating the distance
between the key points, we scale the distance based on the
detected face size and the perceived orientation of the face.

Unlike most approaches that use only one classifier,
REFERuses a two-step ensemble of classifiers to detect facial
expressions with a high accuracy under different head poses.
The pseudo-code is shown in Algorithm 1. The variables will
be discussed in the following subsections.

ASM is used to detect and track 68 key face points. From
these 68 key points, we generate a global descriptor that uses
all 68 key points, and we also generate local descriptors for
each part of the face. The key points used for each descriptor
are given in Table 1.

The proposed descriptors are designed to be robust to
changes in pose and scale. This allows the facial expression
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FIGURE 2. Volunteer descriptor example: the green square is the detected face, the yellow points are the detected key points, [these two are
automatically drawn in real-time], and the blue rectangles are manually added to visualize the different face descriptors.

FIGURE 3. Location of ASM points on the face and the local descriptor
subsets. The red lines connect the ASM points that are part of the same
set, while the blue dotted lines illustrate the distance measures used in
our descriptors. Stars represent the mean points of each descriptor. Note
that some subsets and mean points are not shown to improve clarity.

to work better in the wild, where a camera could be pointed
at almost any angle and distance. To achieve this, we scale
the distance for both size and rotation, and finally, we apply a
logarithmic kernel. The scaling is performed with respect to

a virtual mean point [x̃c, ỹc] for each local descriptor, which
is obtained by averaging the location of the points in the
descriptor (line 9). Figure 3 shows some of the sets and the
location of the mean points for these sets. We only apply
vertical scaling to the point above the calculated center and
horizontal scaling to the point to the left of the calculated
center. We compute the Euclidean distance of each key-point,
as shown on line 11. This distance is normalized by the size of
the face region, which helps provide invariance to the image
resolution and to the distance between the subject and the
camera.

To compensate for the horizontal and vertical orientations
of the head pose, we multiply the scaled descriptors by an
approximate ratio of the rotation. Horizontal scaling corre-
sponds to lines 5 and 13 of Algorithm 1, where H is the
horizontal scaling factor and d̃ is the scaled distance. Point
0 from the detected key points is the point at the top left
of the face, and point 16 is the point at the top right of the
face. We compute the ratio between these distances and use
them to scale the left part of the face. These two points were
chosen because they do not correspond with any moving
muscle, meaning that they will not move with respect to
facial expressions, making them good reference points for
scaling. When H > 1, the left side of the face is closer to the
camera than the right side, and when H < 1, the right side
is closer than the left. Scaling is then applied to the left side
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FIGURE 4. Two-stage classifier hierarchy: the arrows show the flow direction of classification, and the numbers represent
the vector size for each step in the classifier. In the first stage, the classifiers are responsible for local-level predictions,
while the second stage is responsible for global classifications.

to realign the distances in the face to be similar to the frontal
view.

We then compute the ratio of the vertical scaling, which
compensates for the face tilting back and forth. The vertical
rotation ratio V computed on line 6 is based on the ver-
tical positions of points 27, 28, and 29. These points are
chosen since they are nose points that do not move with
facial expressions, but they do move only when a face tilt
is detected. These points are also equidistant in the full
frontal view. The scaled distances are then computed using
the equation on line 15. When V > 1, it means that
the face is tilted forward or looking down on the camera.
If V < 1, the face is tilted backward or looking up to the
camera. We apply vertical scaling to the scaled distances for
all key points above the central pixel to compensate for the
tilt.

Finally, since the descriptors are based on relative distance,
all the values are between 0 and 1. To increase the separation
between the descriptors, we take the logarithm of d̃ , as shown
on line 16.

D. ENSEMBLE SVM CLASSIFIER AND TEMPORAL
ADJUSTMENT
After obtaining the multi-descriptors from each local facial
feature, we train each classifier with a pSVM classifier [62];
hence, every local feature will generate its probability predic-
tion as an output probability vector. These probabilities are
then used as training for the second-stage classifier, which
takes all probabilities from all facial features as an input and
builds a decision hyperplane based on these probabilities.
Figure 4 shows the overall hierarchy of the descriptors and
classifiers. The first stage of classifiers uses several parallel
independent local descriptors, each with their key points.
After obtaining the first descriptors, we predict the probabil-
ity of the facial expression based on each classifier. This gives
us an output probability vector of each facial expression for
each local facial feature. These output probabilities are then
used as input for the second-stage global classifier, which

Algorithm 2 Temporal Adjustment of the Classification
Input: P
Output: P′

P′
← P (1)

P′
e(t−1)
← Pe(t−1) + a (2)

P′
e(t−2)
← Pe(t−2) + a (3)

e(t−2)← e(t−1) (4)
e(t−1)← argmaxi(P

′
i) (5)

produces a global probability based on the local features. This
will give a better prediction than the local classifiers. The
output of the second-stage classifier is also represented in
probability.

E. TEMPORAL ADJUSTMENT
Since facial expressions do not change quickly within a span
of a few consecutive frames, we can assume that previous
predictions would likely be similar to the current predic-
tion. Therefore, to take advantage of this temporal property,
we boost the current prediction probability vector with the
result from previous predictions. This allows the result to be
more stable. For example, when deciding between disgust
and happy, both cases can include a partially open mouth,
especially if the smile is not complete or transitioning from
a different expression. In this case, we noticed that the pre-
diction jumps back and forth between these two expressions,
and adjusting the prediction probability based on previous
predictions stabilizes the classification.

Algorithm 2 shows the steps of the temporal adjustment.
It takes the probability vector P generated by Algorithm 1 as
the input and outputs a corrected decision vector P′. Initially,
the prediction indices e(t−1) and e(t−2) are set to 2, the index
of the neutral facial expression. To avoid unnecessary com-
putations, P′ is not renormalized, and the final prediction is
given by argmaxi P

′
i. The constant a is selected empirically

and set to a = 0.4.
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F. ALTERNATE VIDEO FRAME DETECTION
In our tests, running this algorithm on a PC from a live video
capture resulted in 30 FPS, which is the maximum rate. How-
ever, running this on a Raspberry Pi 4, the FPS dropped to 6.3.
This is 2.6 times faster than the ASM-based paper [59], which
reported an average of 2.4 FPS, although they were using a
different SoC. The process of running feature extraction and
classification is largely serial. The performance results are
discussed in depth in Section V-E.

Most modern mobile devices offer multiple cores, even
affordable ones such as the Raspberry Pi 4. To improve
the performance on mobile devices, we can split the tasks
between all 4 cores to maximize CPU utilization, increase
performance, and reduce latency.

Normally, the process for facial expression recognition
is a simple feed-forward technique, but due to the many
steps required to complete the process, the execution time
is relatively large, resulting in a low FPS. Using alternate
video frame detector (AVFD), the work can be divided among
all the available cores. One core is assigned to read the
camera input, convert it from color to gray, and put the
frame buffer into a shared last in first out (LIFO) queue. The
core can also retrieve the decision from the shared queue,
sort, and apply the temporal adjustment. The three other
threads each pop the last frame and run the remaining steps
to REFER on their own assigned frame. Since Raspberry
Pi only contains 4 cores, we will use three threads to com-
pute REFER, but if more cores are available, we can easily
divide the work into more cores. This technique can hide
some of the latency of real-time facial expression recogni-
tion, since the processes of reading frames from webcams
or stored video no longer wait for the previous prediction to
finish.

Python has a limitation in the multithreaded workload due
to the Global Interpreter Lock (GIL). The GIL effectively
locks the interpretation of the Python script into machine
code to only one thread; hence, it allows only one thread
to run a Python command concurrently, so a multithreaded
Python code can only use 1 core effectively. To address this
limitation, we used an external C compiled library. Not only
do these libraries run faster than a regular python expression,
but they also run outside the locks of the GIL, thus effectively
allowing the use of multiple cores. In our tests, we gained a
2.22 times speed increase, with a perceivable latency reduc-
tion (time between facial expression is performed and the
result appears on the screen). The CPU utilization for a
single-threaded execution was 30% on average with a mem-
ory utilization of approximately 200MB.When using AVFD,
the CPU utilization jumped to 85%, with memory allocation
closer to 550 MB. This is because we had to keep a copy
for the face detector, dlib, and our classifiers for each thread
in memory; otherwise, we would have race conditions when
threads are competing to access the classifiers that cause
crashes or slowdowns.

There was no need for parallelization on the laptop PC,
since we were already able to run the algorithm at the

Algorithm 3 FERNet Processing for One Video Frame
Input: Red, green, blue pixel matrices R, G, B
Output: Q1,Q2, . . . ,Q7
K ← 0.299× R+ 0.587× G+ 0.114× B (1)
F ← VJH(K ) (2)
P ← ASM(F) (3)
foreach ASM point ni ∈ P do

foreach ASM point nj ∈ P do
u← [xni , yni ] (6)
v← [xnj , ynj ] (7)

Ci,j←
u.v

‖u‖ × ‖v‖
(8)

Z ← Imresize(F, 68× 68) (9)
B← LBP(Z ) (10)
Vq = [C,B] (11)
Q← FERNet(Vq) (12)

maximum frame rate of the camera. Thus, there would be no
benefit to parallelize the code on the PC.

IV. THE FERNet ALGORITHM
As shown before, there have been many attempts to cre-
ate a neural network dedicated to detecting facial expres-
sions. The most popular approaches are ResNet 34 and
ResNet 50. These two networks are large and computationally
expensive since they require approximately 20 and 23 mil-
lion parameters, respectively. Thus, we propose FERNet,
a small, computationally efficient and speedy neural net-
work capable of detecting facial expressions from a wide
range of angles with a relatively low number of computations
with 325,479 parameters with a very minimal impact on
accuracy.

The steps for FERNet are shown in Algorithm 3 and are
described in the following subsections. REFER and FERNet
share the first 7 steps in the algorithm.

A. PREPROCESSING AND FACE DETECTION
To perform automatic facial expression recognition, we have
to initialize the camera, capture a new image, and transform
it from a color image to a gray image (line 1). We then detect
the face region in the image using the Viola-Jones algorithm.

B. GEOMETRIC FEATURES EXTRACTION
To obtain the most important geometric features, we use
ASM to detect 68 pertinent points around the face. We then
compute the cosine similarity for every pair of points using
Line 8 in Algorithm 3, where u and v are any points within
the 68 detected using ASM, and Ci,j is the cosine similar-
ity between two ASM points ni and nj. Since ASM gives
68 points, the resulting cosine similarity is a 68 × 68 matrix
representing the cosine similarity from every ASM point to
every ASM point. The benefits of using cosine similarity are
that it is independent of the image scale and it does not exhibit
a large variation in different poses.
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FIGURE 5. FERNet composition: the three-dimensional rectangles
represent the convolutional layers, while the flat rectangle represents the
dense flat layers.

C. TEXTURE FEATURE EXTRACTION
Texture features can be good at detecting facial expressions,
as they can detect ridges and wrinkles on the face, making
them a good fit for facial expression recognition. However,
analyzing texture features can be computationally expensive,
such as when using a Gabor filter; hence, this work uses LBP
for texture feature extraction, as it is effective, computation-
ally inexpensive, and works in non-uniform lighting [13]. The
use of LBP is denoted as LBP() in Algorithm 3. A size 3 ring
is used for LBP, as we found it to be a good balance between
performance and accuracy, meaning we only look at one pixel
and the directly adjacent 8 pixels to obtain the LBP image.
To compute the LBP on each pixel, we first resize the face
image F to 68× 68 using the function Imresize with bilinear
interpolation, which results in a scaled face image Z . We then
begin computing the LBP of the scaled face image Z by
comparing the value of each pixel with its neighboring pixels.
Based on which neighboring pixels are larger than the central
pixel, we obtain a value between 0 and 255. The resulting
values indicate the direction of intensity. LBP is explained in
detail in [13].

D. FERNet
After obtaining both the texture and geometric features,
we merge both features. Both features are represented by a
68 × 68 matrix, resulting in a concatenated matrix Vq of

FIGURE 6. Example of correct classification from the MUG dataset with
angry faces trained with CK+ datasets.

FIGURE 7. Example of correct classification from CK+ with fear
faces. [17].

size 136 × 68. Matrix Vq is then given as input to the neural
network FERNet shown in Figure 5. The FERNet architec-
ture begins with a convolutional layer with rectified linear
activation and 64 feature maps. We then implement a 2-by-
2 max-pooling layer to reduce the size of the data to a fourth,
followed by a dropout layer with a dropout parameter of 50%.
As shown in Fig. 5, we repeat the same structure another
time to further reduce the data, but this time with 32 feature
maps. After that, we flatten the convolutional network to a
dense layer of size 1088. We then add another dense layer
of 256 neurons with a dropout of 50% and then another dense
layer of 128 neurons with a dropout of 50%.

Finally, the output layer has 7 outputs, each providing the
probability Qi that the facial expression i was observed in the
input.

V. RESULTS
To verify the algorithms, we implemented the training code
using Python on a Windows 10 laptop PC equipped with an
i7-8750h Intel CPU and 32 GB of RAM. We used multiple
libraries including OpenCV for frame capture and face detec-
tion, dlib to obtain ASM points [63], and scikit-learn
to train the two-stage SVM model and test the results [64].
Tensorflow is used to train and test FERNet. For accuracy and
performance testing, we used the same previously mentioned
laptop PC, and we also tested the inference accuracy and
performance using a Raspberri Pi 4 device with 4 GB of
RAM.
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A. TRAINING AND TESTING DATASETS
In our training and testing, we used four different datasets,
all publicly available. We used three existing datasets: CK+,
MUG, and KDEF. We also created a custom dataset called
angled posed facial expression (APFE) [54]. This dataset
contains approximately 15,000 frames of video filmed under
different angles at peak expressions for 4 males with no
acting experience aged between 25 and 30. The videos were
shot at a resolution of 640 × 480 and at 30 FPS using a
Logitech c270 camera. The camera was fixed on top of a
screen, and the volunteers were told to look at the camera and
move their faces in concentric circles while performing facial
expressions with different severities, to look up and down,
and finally to make sure that the camera captured their faces
from several angles. We also captured a 1080p video from an
LG G6 smartphone to use for testing only in order to verify
that the proposed algorithms work on different resolutions
and different aspect ratios.

The CK+ dataset [17] contains 123 different subjects,
both males and females, shot directly with a resolution of
640 × 490, for a total of 10,000 image frames. Each shot
starts at neutral and increases until peak expression. The
MUGdataset [52] contains images and videos for 52 different
males and females shot at an 896× 896 resolution at 20 FPS
with 1032 videos and more than 100,000 images. Each video
begins and ends with a neutral expression and peaks in the
middle. The KDEF dataset contains 4900 photos of 70 sub-
jects with 7 different facial expressions, each viewed from
5 different angles.

It is challenging to use transfer learning to train networks
for facial expression recognition since the networks tend to
overfit to the original data, making it difficult to target a new
dataset [37]. Hence, in all our tests, we trained FERNet and
ResNet from scratch.

B. DATA AUGMENTATION
Neural networks are well known to require a large amount of
data to fine tune. Data augmentationmethods that increase the
size of the dataset can lead to an improved accuracy, as seen
in [43], [44], and [46]. To see the effect of data augmenta-
tion on the detection accuracy, we implemented 5 types of
augmentation for every image in each of the datasets. The
5 augmentations are image flip, random brightness adjust-
ment, simultaneous flip and brightness adjustment, random
positive rotation, and random negative rotation. In the image
flip, we simply flip the image from left to right. In the random
brightness adjustment, we convert the image from RGB to
hue-saturation-value (HSV) and multiply the saturation and
value components of each pixel by a random factor between
0.5 and 3 and convert it back to RGB. Finally, in the image
rotation augmentation, we randomly rotate the image by a
random angle between 0◦ and 30◦ for positive rotations or
between −30◦ and 0◦ for negative rotations. The augmen-
tation results in a dataset that is 6 times larger than the
original dataset. Note that for all upcoming graphs and tables,
the accuracy results are when using the data augmentations

TABLE 2. Accuracy percentage when training from original images and
testing with randomly rotated images.

mentioned above, except for Table 2 where we only used the
original dataset with no augmentation.

C. ACCURACY OF REFER
To test the accuracy of the proposed REFER algorithm,
we trained REFER under different conditions to test for
cross-validation accuracy and robustness for rotation.

First we tested for cross-validation accuracy by training
with 90% of the data for every dataset independently and
validating on 10% of the remaining data. We repeated each
test three times and took the average of these runs. The results
are shown in Table 3. While using REFER on the CK+
dataset, we obtained an accuracy of 80% in cross-validation
when using data augmentation. Similarly, we obtained accu-
racies of 97.7%, 74.3%, and 97.7% for the APFE, KDEF,
and MUG datasets, respectively, with the same 90-10 split
between training and validation. The accuracy of predictions
from the videos was measured frame by frame, meaning that
we produce a classification for every frame and compare it to
the actual facial expression.

Second, we tested the robustness to rotations by train-
ing each dataset with non-rotated images and testing on
randomly rotated images. The results in Table 2 show the
accuracy of REFER on all datasets for different ranges
of uniformly distributed random rotations, which indi-
cate that REFER is robust to rotations in wide ranges of
angles.

These results show that this algorithm works well with the
different camera systems, resolutions, apertures, distances,
aspect ratios, and lighting, which are covered by the four
considered datasets, and that it can also make accurate pre-
dictions at an angle. Figures 6, 7, 8a, 8b and 8c show some
correctly predicted samples from the MUG, CK+, and APFE
datasets.

Table 3 provides a comparison of the state-of-the-art lit-
erature for different approaches. Both REFER and FERNet
exhibit some of the highest accuracies in cross-validation test-
ing compared to other geometric- or neural-network-based
approaches while having the fastest detection rate.

Table 4 shows the internal probability from classifiers in
action when attempting to predict the facial expression from
Figure 8c. We can see in Table 4 that individual features
gave a different prediction without a high confidence. While
the second stage classifier not only chose the correct facial
expression, it also did so with a high confidence. REFER
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TABLE 3. Comparing REFER and FERNet with the state-of-the-art.

TABLE 4. Breakdown of the classification probabilities for each descriptor for the example of Fig. 8c.

correctly predicted that ‘‘disgust’’ is the correct expression,
as it has built a decision hyperplane that deduces which
descriptors are more relevant for each expression.

For cross-dataset validation, we trained REFER on one
dataset and tested the accuracy on the remaining datasets. The
results are shown in comparison with FERNet and ResNet 34
in Figure 11. Note that for graph readability, we omitted the
results with KDEF since it showed a similar trend. We also
omitted the results of testing without data augmentation for
graph readability. For example, training with CK+ and test-
ing the accuracy on the MUG dataset, we obtained an accu-
racy of 70.15%, which increased to 72.1%when we used data
augmentation. In all cases, we observed a small improvement
when using data augmentation, which does not, however,
have a bearing on the ranking of the solutions. We also used
previously non-trained video sequences shot at 1920× 1080
from the front-facing camera of LG G6 at different distances
and locations while moving the camera around the face to

see all angles while ensuring that all the faces were captured
within the shot.We copied these shots to a PC and tested them
with REFER, obtaining an accuracy of 97%.

While REFER achieves a good accuracy, there are several
cases of failure in REFER that can be improved in the future.
Figure V-C shows an instance where a face was not detected
due to the high tilt angle. The Viola-Jones failed to detect a
face failing the remainder of the algorithm. Figure 8d shows
a misprediction, where REFER detected the face as a sad
face while it is a surprised face. We can notice that the
failure was in part due to a failure in ASM to accurately
register points when at a large angle, the black beard and
relatively dim lightingmight have also negatively affected the
accuracy of ASM and subsequently the remaining steps in the
classification.

There are few instances where the detection fails, evenwith
proper face registration due to the difference in how people’s
face moves while making facial expressions.
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FIGURE 8. Example of REFER in action.

FIGURE 9. Failed to detect faces due to the large pose angles,
no prediction can be made if faces are not detected.

D. ACCURACY OF FERNet
Since FERNet is based on a CNN, we compared it with two
popular approaches: ResNet 34 and ResNet 50. We imple-
mented all three networks using TensorFlow with the same
dataset as REFER. We first detected the face in the image
using Viola-Jones face detection. Then we resized the area of
the detected face to fit the input layer of the network. Thus,
we gave each network its ideal data shape to work with.

Figure 10 shows the epoch accuracy of FERNet compared
to ResNet 34 and to REFER. In these cases, the same data
is used for both training and testing. Since REFER is an
SVM-based approach, there is no need for epochs; hence,
the value is constant. FERNet gained its accuracy much faster
thanResNet 34with epochs and required a significantly lower
number of epochs to settle. While ResNet 34 achieved close
to a 100% accuracy on the training set in all datasets, it per-
formed poorly in the cross-validation tests, which indicates
overfitting. FERNet training and cross validation accuracy
were very close, indicating very little to no overfitting.

FIGURE 10. Accuracy for the first 100 epochs comparison between
ResNet 34, FERNet, and REFER for each dataset.

To compare the cross-validation accuracy, we used 90% of
the data for training and 10% for validation with 499 epochs
for all cases, except for REFER, where we used the same
90-10 split for training and testing but without having
to use epochs, since it is based on SVM. The results
are the bottom four of Table 3 for each dataset. This
shows that FERNet outperforms ResNet 34 in all tests and
ResNet 50 in three out of four datasets in cross-validation
testing.

Figure 11 shows the results of cross-dataset validation
accuracy. In these tests, we trained the network with one
dataset and used the other two for testing. REFER has
a significant lead in cross-dataset validation over other
approaches, followed by FERNet. Both of our approaches
performed significantly better thanResNet 34 in all tests, with
a better absolute accuracy of 20% or more.
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FIGURE 11. Cross-dataset validation comparison between ResNet 34,
FERNet, and REFER as a function of the training epoch. The top is when
training using MUG and validating using the CKP and APFE datasets,
the middle is when training using CKP and validating using the MUG and
APFE datasets, the bottom is when training using the APFE dataset and
validating using MUG and CKP. The accuracy of REFER does not vary since
there is no notion of epoch in SVM training.

ResNet 34 cross-dataset validation accuracy shows that
there were no gains with the epochs; on the other hand,
FERNet did show improvement with the cross-dataset train-
ing for every dataset. The combination of our smaller network
with the large dropout rate ensures a better generalization
outcome, and our simple descriptors give it a better start-
ing accuracy, even at epoch 0. However, there is a large
difference between the epoch accuracy and cross-dataset
validation accuracy, indicating that current datasets do not
have sufficient variations to allow for a generalized solution.
Moreover, as seen in Figure 11, REFER performs better
than the CNN-based approaches (FERNet and ResNet 34) in
the cross-dataset validation. Therefore, it can be expected to
perform better in less-controlled environments.

E. PERFORMANCE TESTING
One of the main benefits of using a smaller network is to
have a network with a good real-time performance. Given
that FERNet has 325,479 tunable parameters compared to
20 million parameters in ResNet 34, we expect the network
to train faster and to run inference faster. To measure the
performance, we used two systems. One laptop PC with an
i7-8750h with 32 GB of RAM with an RTX 2060 GPU and
a Raspberry Pi 4 with 4 GB of RAM. Training the network
took 30 minutes for FERNet and 4 hours for ResNet 34 when
using the GPU to train the networks. Once those were trained,
we ran the same network using a laptop. To run the networks
on a Raspberry Pi 4, we saved the trained network to a file
on a PC and then moved the file to the Raspberry Pi 4 and

TABLE 5. Number of frames per second for ResNet 34, FERNet and REFER.

installed the required library, frameworks, and necessary sys-
tem environment variables.

To measure the FPS, we ran a code that includes all the
steps of automatic facial detection from start to finish, includ-
ing opening the camera, obtaining a new frame, converting
a color image to grayscale, detecting the face, running the
processing and feature extraction, running the network, and
finally obtaining the prediction. In the case of ResNet 34,
we only need to detect the face and resize it to fit the input
layer of the network and skip the remaining preprocessing
steps. We measure the performance by counting the number
of predictions divided by the number of seconds in the time
elapsed. We ran the test for approximately 5 minutes of live
video capture. Table 5 shows the performance summary when
running the full stack of automatic facial expressions. On the
laptop GPU, we found that running ResNet 34 resulted in an
average of 15 predictions per second, while the predictions
when running FERNet are a stable 30 FPS, which is the
maximum frame rate that can be achieved with the camera.
On the Raspberry Pi 4 we ran three tests. Using ResNet 34,
we determined that the average frame rate is 2.75 FPS. Run-
ning FERNet resulted in 11.5 FPS on the Raspberry Pi 4.
Flattening the network and running it with TensorFlow-lite
on the Raspberry Pi 4 resulted in 14 FPS.

The results show that, despite having more prepro-
cessing steps and feature extraction than ResNet 34,
FERNet ran up to 5 times faster with a very small detri-
ment to the accuracy, even surpassing both ResNet net-
works, with the cross-validation accuracy indicating better
results on the fresh data. Running REFER on the Rasp-
berry Pi 4 results in 6.3 frames per second when using
a single-threaded approach. Using AVFD on Raspberry Pi
4 resulted in 14 frames per second. Note that while AVFD
does improve the throughput, the latency of detection will
not improve since the detection pipeline still needs to go
through all the steps before reaching a result, but it can reduce
the latency of image capture since we do not have to wait
for the current frame to finish to begin working on the next
frame. Another thing to note is that both REFER while using
AVFD and ResNet 34 require more than 80% of the CPU time
when running. Single-threaded REFER and FERNet require
approximately 30% and 40% the CPU time, respectively.

From the performance and accuracy results, we can see that
FERNet is the fastest approach with the lowest latency for
detecting facial expressions with a high accuracy on familiar
data, making it ideal for applications where we can tune the
network before applying, while still working well on new
data. REFER truly works well with fresh data, as shown in
the cross-dataset validation, while being fast enough formany
applications, while less accurate than FERNet or ResNet on
familiar data.
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VI. CONCLUSION
This paper presented two novel approaches for real-time
automatic facial expression recognition called REFER and
FERNet. The first accurately predicts facial expressions at
different angles and distances with up to a 97% accuracy in
real time on the APFE dataset, even onmobile hardware, such
as a Raspberry Pi 4.

REFER contains four improvements that can be used inde-
pendently: custom descriptors based on geometric features
that allow detection at different angles and scales, ensembles
of SVM classifiers for a better global prediction from local
predictions, temporal adjustments to improve consistency
and accuracy over sequences of predictions, and AVFD for
improving the speed of detection. With all of the previously
mentioned improvements, it has been shown to have the best
cross-dataset performance. On the other hand, FERNet is a
compact neural network that achieves a similar accuracy to
the state of the art with a significantly faster performance
on the same datasets and a better accuracy on new data than
ResNet.
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