Rodrigo Randel, Daniel Aloise, Simon J. Blanchard et Alain Hertz
Article de revue (2021)
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Tous droits réservés Télécharger (1MB) |
Abstract
Clustering algorithms help identify homogeneous subgroups from data. In some cases, additional information about the relationship among some subsets of the data exists. When using a semi-supervised clustering algorithm, an expert may provide additional information to constrain the solution based on that knowledge and, in doing so, guide the algorithm to a more useful and meaningful solution. Such additional information often takes the form of a cannot-link constraint (i.e., two data points cannot be part of the same cluster) or a must-link constraint (i.e., two data points must be part of the same cluster). A key challenge for users of such constraints in semi-supervised learning algorithms, however, is that the addition of inaccurate or conflicting constraints can decrease accuracy and little is known about how to detect whether expert-imposed constraints are likely incorrect. In the present work, we introduce a method to score each must-link and cannot-link pairwise constraint as likely incorrect. Using synthetic experimental examples and real data, we show that the resulting impact score can successfully identify individual constraints that should be removed or revised.
Mots clés
Clustering, Semi-supervised, Pairwise constraints, Constraint selection, Lagrangian duality
Sujet(s): |
2700 Technologie de l'information > 2706 Génie logiciel 2700 Technologie de l'information > 2713 Algorithmes |
---|---|
Département: |
Département de génie informatique et génie logiciel Département de mathématiques et de génie industriel |
Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
Organismes subventionnaires: | GRSNG / NSERC |
Numéro de subvention: | 2017-05617, 2017-05688 |
URL de PolyPublie: | https://publications.polymtl.ca/10831/ |
Titre de la revue: | Data Mining and Knowledge Discovery (vol. 35, no 6) |
Maison d'édition: | Springer Nature |
DOI: | 10.1007/s10618-021-00794-0 |
URL officielle: | https://doi.org/10.1007/s10618-021-00794-0 |
Date du dépôt: | 14 mars 2023 11:41 |
Dernière modification: | 26 sept. 2024 09:42 |
Citer en APA 7: | Randel, R., Aloise, D., Blanchard, S. J., & Hertz, A. (2021). A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering. Data Mining and Knowledge Discovery, 35(6), 2341-2368. https://doi.org/10.1007/s10618-021-00794-0 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions