<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Tambon, Florian"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Nombre de documents: 14

Article de revue

Tambon, F., Khomh, F., & Antoniol, G. (2024). <i>GIST</i> : Generated Inputs Sets Transferability in Deep Learning. ACM Transactions on Software Engineering and Methodology, -. Lien externe

Mahu, A., Singh, A., Tambon, F., Ouellette, B., Delisle, J.-, Paul, T., Khomh, F., Marois, A., & Doyon-Poulin, P. (2024). Validation of Vigilance Decline Capability in A Simulated Test Environment: A Preliminary Step Towards Neuroadaptive Control. AHFE international, 126, 45-59. Lien externe

Morovati, M. M., Nikanjam, A., Tambon, F., Khomh, F., & Jiang, Z. M. (2024). Bug characterization in machine learning-based systems. Empirical Software Engineering, 29(1), 14 (29 pages). Lien externe

Morovati, M. M., Tambon, F., Taraghi, M., Nikanjam, A., & Khomh, F. (2024). Common challenges of deep reinforcement learning applications development: an empirical study. Empirical Software Engineering, 29, 95 (33 pages). Lien externe

Tambon, F., Nikanjam, A., An, L., Khomh, F., & Antoniol, G. (2024). Silent bugs in deep learning frameworks: an empirical study of Keras and TensorFlow. Empirical Software Engineering, 29(1), 10 (34 pages). Lien externe

Tambon, F., Khomh, F., & Antoniol, G. (2023). A probabilistic framework for mutation testing in deep neural networks. Information and Software Technology, 155, 107129 (13 pages). Lien externe

Tambon, F., Laberge, G., An, L., Nikanjam, A., Mindom, P. S. N., Pequignot, Y., Khomh, F., Antoniol, G., Merlo, E., & Laviolette, F. (2022). How to certify machine learning based safety-critical systems? A systematic literature review. Automated Software Engineering, 29(2). Lien externe

Communication écrite

Kouemo Ngassom, S., Moradi Dakhel, A., Tambon, F., & Khomh, F. (juillet 2024). Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [Communication écrite]. 1st ACM International Conference on AI-Powered Software (ALWARE 2024), Porto de Galinhas, Brazil. Lien externe

Taraghi, M., Dorcelus, G., Foundjem, A., Tambon, F., & Khomh, F. (mars 2024). Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends [Communication écrite]. 31st IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2024), Rovaniemi, Finland. Lien externe

Tambon, F., Majfinasab, V., Nikanjam, A., Khomh, F., & Antoniol, G. (avril 2023). Mutation testing of deep reinforcement learning based on real faults [Communication écrite]. 16th IEEE Conference on Software Testing, Verification and Validation (ICST 2023), Dublin, Ireland. Lien externe

Ensemble de données

Tambon, F. (2024). GIST: Generated Inputs Sets Transferability in Deep Learning (Part 2) [Ensemble de données]. Lien externe

Tambon, F., Khomh, F., & Antoniol, G. (2022). A Probabilistic Framework for Mutation Testing in Deep Neural Networks - Models archive Part 1 [Ensemble de données]. Lien externe

Tambon, F., Khomh, F., & Antoniol, G. (2022). A Probabilistic Framework for Mutation Testing in Deep Neural Networks - Models archive Part 2 [Ensemble de données]. Lien externe

Tambon, F., Khomh, F., & Antoniol, G. (2022). A Probabilistic Framework for Mutation Testing in Deep Neural Networks - Models archive Part 3 [Ensemble de données]. Lien externe

Liste produite: Thu Jan 2 05:32:46 2025 EST.