<  Back to the Polytechnique Montréal portal

Items where Author is "Randel, Rodrigo"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Authors | Publication Date | Document subtype | No Grouping
Number of items: 4.

Randel, R., Aloise, D., & Hertz, A. (2023, April). A Lagrangian-based approach to learn distance metrics for clustering with minimal data transformation [Paper]. SIAM International Conference on Data Mining (SDM 2023), Minneapolis, MN, USA. External link

Randel, R., Aloise, D., Blanchard, S. J., & Hertz, A. (2021). A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering. Data Mining and Knowledge Discovery, 35(6), 2341-2368. Available

Randel, R., Aloise, D., Blanchard, S., & Hertz, A. (2019). A Lagrangian-based score for assessing the quality of pairwise constraints in SSC. (Technical Report n° G-2019-96). External link

Randel, R., Aloise, D., Mladenović, N., & Hansen, P. (2018). On the k-medoids model for semi-supervised clustering. (Technical Report n° G-2018-23). External link

List generated on: Mon Nov 10 09:11:42 2025 EST