Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Randel, R., Aloise, D., & Hertz, A. (avril 2023). A Lagrangian-based approach to learn distance metrics for clustering with minimal data transformation [Communication écrite]. SIAM International Conference on Data Mining (SDM 2023), Minneapolis, MN, USA. Lien externe
Randel, R., Aloise, D., Blanchard, S. J., & Hertz, A. (2021). A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering. Data Mining and Knowledge Discovery, 35(6), 2341-2368. Disponible