![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
A word cloud is a visual representation of the most frequently used words in a text or a set of texts. The words appear in different sizes, with the size of each word being proportional to its frequency of occurrence in the text. The more frequently a word is used, the larger it appears in the word cloud. This technique allows for a quick visualization of the most important themes and concepts in a text.
In the context of this page, the word cloud was generated from the publications of the author {}. The words in this cloud come from the titles, abstracts, and keywords of the author's articles and research papers. By analyzing this word cloud, you can get an overview of the most recurring and significant topics and research areas in the author's work.
The word cloud is a useful tool for identifying trends and main themes in a corpus of texts, thus facilitating the understanding and analysis of content in a visual and intuitive way.
Ben Yahia, O., Garroussi, Z., Sanso, B., Frigon, J.-F., Martel, S., Lesage-Landry, A., & Karabulut Kurt, G. (2024). A scalable architecture for future regenerative satellite payloads. (Technical Report n° G-2024-40). External link
Ben Yahia, O., Garroussi, Z., Sanso, B., Frigon, J.-F., Martel, S., Lesage-Landry, A., & Karabulut Kurt, G. (2024). A Scalable Architecture for Future Regenerative Satellite Payloads. IEEE Wireless Communications Letters, 1-1. External link
Ben Yahia, O., Garroussi, Z., Bélanger, O., Sanso, B., Frigon, J.-F., Martel, S., Lesage-Landry, A., & Karabulut Kurt, G. (2024). Evolution of High-Throughput Satellite Systems: A Vision of Programmable Regenerative Payload. IEEE Communications Surveys & Tutorials, 3450292 (34 pages). External link
Bélanger, O., Ben Yahia, O., Martel, S., Lesage-Landry, A., & Karabulut Kurt, G. (2024, March). Quality of Service-Constrained Online Routing in High Throughput Satellites [Paper]. 2024 IEEE Aerospace Conference, Big Sky, MT, USA (9 pages). External link
Daoust, O., Nayir, H., Azam, I., Lesage-Landry, A., & Karabulut Kurt, G. (2024, June). Tensor-Based Space Debris Detection for Satellite Mega-constellations [Paper]. 2024 IEEE International Conference on Communications Workshops (ICC Workshops 2024), Denver, CO, USA. External link
Henriquez, R., Lesage-Landry, A., Taylor, J. A., Olivares, D., & Negrete-Pincetic, M. (2017, November). Managing load contract restrictions with online learning [Paper]. IEEE Global Conference on Signal and Information Processing (GlobalSIP 2017), Montréal, Qc, Canada. External link
Lupien, J.-L., & Lesage-Landry, A. (2025). Ex post conditions for the exactness of optimal power flow conic relaxations. Electric Power Systems Research, 238, 111130 (4 pages). External link
Li, F., Kocar, I., & Lesage-Landry, A. (2024, July). A Rapid Method for Impact Analysis of Grid-edge Technologies on Power Distribution Networks [Paper]. IEEE Power & Energy Society General Meeting (PESGM), Seattle, WA, USA. External link
Li, F., Kocar, I., & Lesage-Landry, A. (2024). A Rapid Method for Impact Analysis of Grid-Edge Technologies on Power Distribution Networks. IEEE Transactions on Power Systems, 39(1), 1530-1542. External link
Li, F., Campeau, É., Kocar, I., & Lesage-Landry, A. (2024). Inferring electric vehicle charging patterns from smart meter data for impact studies. (Technical Report n° G-2024-02). External link
Li, F., Campeau, É., Kocar, I., & Lesage-Landry, A. (2024). Inferring electric vehicle charging patterns from smart meter data for impact studies. Electric Power Systems Research, 235, 110789 (6 pages). External link
Lesage-Landry, A., & Pallage, J. (2024). Online dynamic submodular optimization. Automatica, 167, 111758 (9 pages). External link
Lupien, J.-L., Shames, I., & Lesage-Landry, A. (2024). Online Interior-Point Methods for Time-Varying Equality-Constrained Optimization. IEEE Transactions on Automatic Control, 8 pages. External link
Lesage-Landry, A., Pellerin, F., Callaway, D. S., & Taylor, J. A. (2023). Optimally scheduling public safety power shutoffs. Stochastic systems, 19 pages. Available
Lesage-Landry, A., & Callaway, D. S. (2023). Approximated multi-agent fitted Q iteration. Systems & Control Letters, 177, 105563 (10 pages). External link
Li, F., Kocar, I., & Lesage-Landry, A. (2023, July). Mitigating Equipment Overloads due to Electric Vehicle Charging Using Customer Incentives [Paper]. IEEE Power & Energy Society General Meeting (PESGM 2023), Orlando, FL, USA (5 pages). External link
Lupien, J.-L., & Lesage-Landry, A. (2023). An Online Newton's Method for Time-Varying Linear Equality Constraints. IEEE Control Systems Letters, 7, 1423-1428. External link
Li, F., Kocar, I., & Lesage-Landry, A. (2022). Rapid method for impact analysis of grid-edge technologies on power distribution networks. (Technical Report n° 2022-45). External link
Lesage-Landry, A., & Callaway, D. S. (2022). Batch reinforcement learning for network-safe demand response in unknown electric grids. Electric Power Systems Research, 212, 108375 (7 pages). External link
Lesage-Landry, A., Taylor, J. A., & Callaway, D. S. (2021). Online convex optimization with binary constraints. IEEE Transactions on Automatic Control, 66(12), 6164-6170. External link
Lesage-Landry, A., Taylor, J. A., & Shames, I. (2021). Second-order online nonconvex optimization. IEEE Transactions on Automatic Control, 66(10), 4866-4872. External link
Lesage-Landry, A., & Callaway, D. S. (2020). Dynamic and distributed online convex optimization for demand response of commercial buildings. IEEE Control Systems Letters, 4(3), 632-637. External link
Lesage-Landry, A., Chen, S., & Taylor, J. A. (2020). Estimating the frequency coupling matrix from network measurements. IEEE Transactions on Control of Network Systems, 7(2), 724-733. External link
Lesage-Landry, A., Wang, H., Shames, I., Mancarella, P., & Taylor, J. (2020). Online convex optimization of multi-energy building-to-grid ancillary services. IEEE Transactions on Control Systems Technology, 28(6), 2416-2431. External link
Lesage-Landry, A., Shames, I., & Taylor, J. A. (2020). Predictive online convex optimization. Automatica, 113, 108771 (9 pages). External link
Lesage-Landry, A., & Taylor, J. A. (2020). A second-order cone model of transmission planning with alternating and direct current lines. European Journal of Operational Research, 281(1), 174-185. External link
Lesage-Landry, A., & Taylor, J. A. (2018). The multi-armed bandit with stochastic plays. IEEE Transactions on Automatic Control, 63(7), 2280-2286. External link
Lesage-Landry, A., & Taylor, J. A. (2018). Setpoint tracking with partially observed loads. IEEE Transactions on Power Systems, 33(5), 5615-5627. External link
Lesage-Landry, A., & Taylor, J. A. (2017, January). Learning to shift thermostatically controlled loads [Paper]. 5th Hawaii International Conference on System Science (HICSS 2017), Big Island, Hawaii. External link
Lesage-Landry, A., & Taylor, J. A. (2017, August). Online convex optimization for demand response [Paper]. IREP 2017 Symposium : X Bulk Power Systems Dynamics and Control Symposium (IREP 2017), Espinho, Portugal (8 pages). Unavailable
Loranger, S., Lesage-Landry, A., Soares De Lima Filho, E., Nemova, G., Dantas, N., Morais, P., & Kashyap, R. (2013, February). Spectroscopic and life-time measurements of quantum dot doped glass for optical refrigeration: a feasibility study [Paper]. SPIE OPTO 2013, San Francisco, California (8 pages). External link
Mai, V., Maisonneuve, P., Zhang, T., Nekoei, H., Paull, L., & Lesage-Landry, A. (2024). Correction to: Multi-agent reinforcement learning for fast-timescale demand response of residential loads. Machine Learning with Applications, 1 page. External link
Maisonneuve, P., & Lesage-Landry, A. (2024). Learning-accelerated mixed-integer quadratic programming for unit commitment. (Technical Report n° G-2024-08). External link
Molénat, M., Mahseredjian, J., Rashidirad, N., & Lesage-Landry, A. (2024). On the frequency variation in load-flow calculations for islanded AC microgrid. (Technical Report n° G-2024-26). External link
Merrigan, H., Yu-Hsin, W., Shigematsu, K., Yamamoto, M., Imaoka, J., & Lesage-Landry, A. (2024, November). Optimising Electric Vehicle Wireless Charging Systems Using Neural Networks to Enable Free-Position Parking [Paper]. 13th International Conference on Renewable Energy Research and Applications (ICRERA 2024), Nagasaki, Japan. External link
Mai, V., Maisonneuve, P., Zhang, T., Nekoei, H., Paull, L., & Lesage-Landry, A. (2023). Multi-agent reinforcement learning for fast-timescale demand response of residential loads. Machine Learning with Applications, 32 pages. External link
Mai, V., Zhang, T., & Lesage-Landry, A. (2021, December). Multi-agent reinforcement learning for renewable integration in the electric power grid [Paper]. NeurIPS Workshop on Tackling Climate with Machine Learning. Unavailable
Mohamed, A., Lesage-Landry, A., & Taylor, J. A. (2017, October). Dispatching thermostatically controlled loads for frequency regulation using adversarial multi-armed bandits [Paper]. IEEE Electrical Power and Energy Conference (EPEC 2017), Saskatoon, Sk (6 pages). External link
Ouellette, O., Lesage-Landry, A., Scheffel, B., Hoogland, S., García de Arquer, F. P., & Sargent, E. H. (2020). Spatial collection in colloidal quantum dot solar cells. Advanced Functional Materials, 30(1), 1908200 (7 pages). External link
Pallage, J., & Lesage-Landry, A. (2024). (Trustworthy) AI for Québec's virtual power plant. (Technical Report n° G-2024-23). External link
Ricaux, V., Legrain, A., & Lesage-Landry, A. (2024). On the clique decomposition impact to the optimal power flow semidefinite relaxation solve time. (Technical Report n° G-2024-77). External link