Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Al-Sakkari, E. G., Ragab, A., Ali, M., Dagdougui, H., Boffito, D. C., & Amazouz, M. (juillet 2024). Learn-To-Design: Reinforcement Learning-Assisted Chemical Process Optimization [Communication écrite]. Foundations of Computer Aided Process Design (FOCAPD 2024), Breckenridge, Colorado, USA. Publié dans Systems and Control Transactions, 3. Lien externe
Al-Sakkari, E. G., Ragab, A., Dagdougui, H., Boffito, D. C., & Amazouz, M. (2024). Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities. Science of the Total Environment, 917, 170085 (32 pages). Lien externe
Al-Sakkari, E. G., Ragab, A., Ali, M., Dagdougui, H., Boffito, D. C., & Amazouz, M. (juillet 2024). Learn-to-design : reinforcement learning-assisted chemical process optimization [Communication écrite]. 10th International Conference on Foundations of Computer Aid Process Design (FOCAPD 2024), Breckenridge, Colorado, USA. Publié dans Systems & Control Transactions, 3. Lien externe
Elhefnawy, M., Ouali, M.-S., Ragab, A., & Amazouz, M. (2023). Fusion of heterogeneous industrial data using polygon generation & deep learning. Results in Engineering, 19, 11 pages. Disponible
Al-Sakkari, E. G., Ragab, A., So, T. M. Y., Shokrollahi, M., Dagdougui, H., Navarri, P., Elkamel, A., & Amazouz, M. (2023). Machine learning-assisted selection of adsorption-based carbon dioxide capture materials. Journal of Environmental Chemical Engineering, 11(5), 110732 (25 pages). Lien externe
Ragab, A., Ghezzaz, H., & Amazouz, M. (2022). Decision fusion for reliable fault classification in energy-intensive process industries. Computers in Industry, 138, 13 pages. Lien externe
Soualhi, M., El Koujok, M., Nguyen, K. T. P., Medjaher, K., Ragab, A., Ghezzaz, H., Amazouz, M., & Ouali, M.-S. (2021). Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors. Applied Energy, 283, 116049 (14 pages). Lien externe
Ragab, A., El Koujok, M., Ghezzaz, H., Amazouz, M., Ouali, M.-S., & Yacout, S. (2019). Deep understanding in industrial processes by complementing human expertise with interpretable patterns of machine learning. Expert Systems With Applications, 122, 388-405. Lien externe
Alizadeh, E., Koujok, M. E., Ragab, A., & Amazouz, M. (août 2018). A Data-Driven Causality Analysis Tool for Fault Diagnosis in Industrial Processes [Communication écrite]. 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS 2018), Warsaw, Poland. Publié dans IFAC-PapersOnLine, 51(24). Lien externe
Ragab, A., El-Koujok, M., Poulin, B., Amazouz, M., & Yacout, S. (2018). Fault diagnosis in industrial chemical processes using interpretable patterns based on logical analysis of data. Expert Systems With Applications, 95, 368-383. Lien externe
Ragab, A., El-Koujok, M., Amazouz, M., & Yacout, S. (janvier 2017). Fault detection and diagnosis in the Tennessee Eastman Process using interpretable knowledge discovery [Communication écrite]. 63rd Annual Reliability and Maintainability Symposium (RAMS 2017), Orlando, FL, United states. Lien externe
Amazouz, M. (1995). Analyse du transfert de chaleur et de la dissipation visqueuse dans un composite unidirectionnel [Thèse de doctorat, École Polytechnique de Montréal]. Non disponible