<  Back to the Polytechnique Montréal portal

Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection

Eslam G. Al-Sakkari, Ahmed Ragab, Mostafa Amer, Olumoye Ajao, Marzouk Benali, Daria Camilla Boffito, Hanane Dagdougui and Mouloud Amazouz

Article (2024)

Open Acess document at official publisher
An external link is available for this item
Department: Department of Chemical Engineering
Department of Electrical Engineering
Department of Mathematics and Industrial Engineering
PolyPublie URL: https://publications.polymtl.ca/61946/
Journal Title: Digital Chemical Engineering (vol. 14)
Publisher: Elsevier BV
DOI: 10.1016/j.dche.2024.100207
Official URL: https://doi.org/10.1016/j.dche.2024.100207
Date Deposited: 16 Jan 2025 14:22
Last Modified: 16 Jan 2025 14:22
Cite in APA 7: Al-Sakkari, E. G., Ragab, A., Amer, M., Ajao, O., Benali, M., Boffito, D. C., Dagdougui, H., & Amazouz, M. (2024). Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection. Digital Chemical Engineering, 14, 100207 (26 pages). https://doi.org/10.1016/j.dche.2024.100207

Statistics

Dimensions

Repository Staff Only

View Item View Item