Eslam G. Al-Sakkari, Ahmed Ragab, Mostafa Amer, Olumoye Ajao, Marzouk Benali, Daria Camilla Boffito, Hanane Dagdougui
and Mouloud Amazouz
Article (2024)
Department: |
Department of Chemical Engineering Department of Electrical Engineering Department of Mathematics and Industrial Engineering |
---|---|
PolyPublie URL: | https://publications.polymtl.ca/61946/ |
Journal Title: | Digital Chemical Engineering (vol. 14) |
Publisher: | Elsevier BV |
DOI: | 10.1016/j.dche.2024.100207 |
Official URL: | https://doi.org/10.1016/j.dche.2024.100207 |
Date Deposited: | 16 Jan 2025 14:22 |
Last Modified: | 16 Jan 2025 14:22 |
Cite in APA 7: | Al-Sakkari, E. G., Ragab, A., Amer, M., Ajao, O., Benali, M., Boffito, D. C., Dagdougui, H., & Amazouz, M. (2024). Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection. Digital Chemical Engineering, 14, 100207 (26 pages). https://doi.org/10.1016/j.dche.2024.100207 |
---|---|
Statistics
Dimensions