



| <b>Titre:</b> Title:    | Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection. Supplément |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auteurs:<br>Authors:    | Eslam G. Al-Sakkari, Ahmed Ragab, Mostafa Amer, Olumoye Ajao,<br>Marzouk Benali, Daria Camilla Boffito, Hanane Dagdougui, &<br>Mouloud Amazouz                        |
| Date:                   | 2025                                                                                                                                                                  |
| Type:                   | Article de revue / Article                                                                                                                                            |
| Référence:<br>Citation: | linglistrial decarnonization, prediction of Hansen collinility parameters for                                                                                         |

# Document en libre accès dans PolyPublie Open Access document in PolyPublie

| <b>URL de PolyPublie:</b> PolyPublie URL:  | https://publications.polymtl.ca/61946/                                                                                                                                                            |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Version:                                   | Matériel supplémentaire / Supplementary material<br>Révisé par les pairs / Refereed                                                                                                               |
| Conditions d'utilisation:<br>Terms of Use: | Creative Commons Attribution-Utilisation non commerciale-Pas<br>d'oeuvre dérivée 4.0 International / Creative Commons Attribution-<br>NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND) |

# Document publié chez l'éditeur officiel Document issued by the official publisher

| <b>Titre de la revue:</b><br>Journal Title: | Digital Chemical Engineering (vol. 14)                                                                                                                                                                     |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Maison d'édition:</b><br>Publisher:      | Elsevier                                                                                                                                                                                                   |
| <b>URL officiel:</b> Official URL:          | https://doi.org/10.1016/j.dche.2024.100207                                                                                                                                                                 |
| Mention légale:<br>Legal notice:            | ©2024 Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |

## Ensemble machine learning for empowered industrial decarbonization: High-Fidelity predictions of Hansen solubility parameters for streamlined solvent selection

Eslam G. Al-Sakkari<sup>1,2</sup>, Ahmed Ragab<sup>1,2</sup>, Mostafa Amer<sup>3</sup>, Olumoye Ajao<sup>4</sup>, Marzouk Benali<sup>2,\*</sup>, Daria C. Boffito<sup>5</sup>, Hanane Dagdougui<sup>1</sup> and Mouloud Amazouz<sup>2</sup>

### **Supplementary Materials**

To complement the findings presented in our manuscript, this supplementary material offers comprehensive insights into the machine learning algorithms, data preprocessing steps, and validation processes used to enhance the prediction of Hansen solubility parameters for efficient chemical solvent selection.

<sup>&</sup>lt;sup>1</sup> Department of Mathematics and Industrial Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada

<sup>&</sup>lt;sup>2</sup> Natural Resources Canada, CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec, J3X 1P7, Canada

<sup>&</sup>lt;sup>3</sup> Department of Electrical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada

<sup>&</sup>lt;sup>4</sup> Natural Resources Canada, Clean Fuels Branch, Fuel Diversification Division, 580 Booth Street, Ottawa, K1A 0E4, Canada

<sup>&</sup>lt;sup>5</sup> Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada

<sup>\*</sup>Corresponding author: marzouk.benali@nrcan-rncan.gc.ca

### **Descriptive captions**

|        | TABLES                                                                                           |                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Number | Title                                                                                            | Description                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| S1     | Key descriptors based on NNMF                                                                    | This table summarizes the most significant descriptors extracted from RDKit with their corresponding scores after using NNMF.                                                                                                      |  |  |  |  |  |  |  |
| S2     | Decision fusion results (Solubility_2 "δ <sub>P</sub> ")                                         | This table introduces a summary of<br>the results of each fusion step in the<br>case of predicting polarization<br>solubility parameter                                                                                            |  |  |  |  |  |  |  |
| S3     | Decision fusion results (Solubility_3 "δ <sub>H</sub> ")                                         | This table introduces a summary of<br>the results of each fusion step in the<br>case of predicting hydrogen-bonding<br>solubility parameter                                                                                        |  |  |  |  |  |  |  |
| S4     | Comparison with selected previous studies considering ML models to predict solubility parameters | In this table, we compare the results of our methodology with those previously published in recent studies considering ML for the prediction of various solubility parameters. This comparison highlights the novelty of our work. |  |  |  |  |  |  |  |

|        | FIGURES                                                                                                                                                    |                                                                                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number | Title                                                                                                                                                      | Description                                                                                                                                                                                                             |
| S1     | NNMF concept simple schematics                                                                                                                             | This figure depicts the common schematics of NNMF technique reported in literature                                                                                                                                      |
| \$2    | NNMF results for $(n_{descriptors} = 208 \& n_{components} = 3)$                                                                                           | This figure depicts the data biclustering at the optimal number of components with the scores of the whole molecular descriptors extracted from RDKit. The key descriptors were then determined based on these results. |
| S3     | Effect of dataset size on (a) the accuracy/score and (b) mean squared error of ML modeling using RF, XGB and SVR for Polarization solubility parameter     | This figure illustrates the effect of data size during the training of different ML models to predict the polarization solubility parameters.                                                                           |
| S4     | Effect of dataset size on (a) the accuracy/score and (b) mean squared error of ML modeling using RF, XGB and SVR for Hydrogen bonding solubility parameter | This figure illustrates the effect of data size during the training of different ML models to predict the                                                                                                               |

|     |                                                                                                                        | hydrogen-bonding solubility parameters.                                                                                                                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$5 | Results of different individual techniques (Polarization solubility parameter).                                        | This figure visualizes the results of all the optimized models that build the developed fused model to predict polarization solubility parameter. The presented results represent 100 randomly selected data points.       |
| S6  | Results of final decision fusion vs. selected different individual techniques (Polarization solubility parameter).     | This figure compares the performance of individual models with that of the fused model to illustrate its superiority to predict polarization solubility parameter based on SMILES codes.                                   |
| S7  | Predicted Vs. experimental values of polarization solubility parameter (final decision fusion results).                | This figure compares the predicted values of the polarization solubility parameter using the developed methodology to the experimental values to show the prediction accuracy of this new method.                          |
| S8  | Results of different individual techniques (Hydrogen bonding solubility parameter).                                    | This figure visualizes the results of all the optimized models that build the developed fused model to predicted hydrogen-bonding solubility parameter. The presented results represent 100 randomly selected data points. |
| S9  | Results of final decision fusion vs. selected different individual techniques (Hydrogen bonding solubility parameter). | This figure compares the performance of individual models with that of the fused model to illustrate its superiority to predict hydrogenbonding solubility parameter based on SMILES codes.                                |
| S10 | Predicted Vs. experimental values of hydrogen bonding solubility parameter (final decision fusion results).            | This figure compares the predicted values of the hydrogen-bonding using the developed methodology to the experimental values to show the prediction accuracy of this new method.                                           |
| S11 | SHAP values of sugar cane bagasse-based lignin solvents classification based on RED (Descriptors)                      | This figure shows the relative importance of different key descriptors that represent their ability to predict the solvent's goodness towards sugar cane bagasse-based lignin solvation.                                   |
| S12 | SHAP values of sugar cane bagasse-based lignin solvents classification based on RED (Hansen solubility parameters)     | This figure focuses on the relative importance of HSPs and how they affect the ability of solvents to dissolve sugar cane bagasse-based lignin. This will help in selecting the                                            |

|     |                                                                                                    | appropriate solvent based on their HSPs and will help during the design of new solvents.                                                                                                                                                                                     |
|-----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S13 | SHAP values of CO <sub>2</sub> solvents classification based on RED ( <b>Descriptors</b> )         | This figure shows the relative importance of different key descriptors that represent their ability to predict the solvent's goodness towards CO <sub>2</sub> solvation.                                                                                                     |
| S14 | SHAP values of CO <sub>2</sub> solvents classification based on RED (Hansen solubility parameters) | This figure focuses on the relative importance of HSPs and how they affect the ability of solvents to dissolve CO <sub>2</sub> . This will help in selecting the appropriate solvent based on their HSPs and will help during the design of new solvents for carbon capture. |

 Table S1: Key descriptors based on NNMF

| <b>Components of NNMF</b> | <b>Key Descriptors</b> | <b>Descriptor Score on NNMF</b> |  |  |  |  |
|---------------------------|------------------------|---------------------------------|--|--|--|--|
|                           | BCUT2D_LOGPLOW         | 5.19314901                      |  |  |  |  |
|                           | BCUT2D_CHGLO           | 5.19090594                      |  |  |  |  |
|                           | BCUT2D_MRLOW           | 5.17520485                      |  |  |  |  |
|                           | FpDensityMorgan1       | 5.17439906                      |  |  |  |  |
|                           | MinEStateIndex         | 5.17077739                      |  |  |  |  |
|                           | VSA_EState5            | 5.16504564                      |  |  |  |  |
|                           | FpDensityMorgan2       | 5.16018481                      |  |  |  |  |
|                           | HallKierAlpha          | 5.15543013                      |  |  |  |  |
|                           | MinPartialCharge       | 5.15176211                      |  |  |  |  |
|                           | FpDensityMorgan3       | 5.13418228                      |  |  |  |  |
|                           | BCUT2D_MWLOW           | 5.13283145                      |  |  |  |  |
|                           | VSA_EState9            | 5.12312419                      |  |  |  |  |
| Component 1               | PEOE_VSA5              | 5.12187283                      |  |  |  |  |
|                           | BCUT2D_MWHI            | 5.1208136                       |  |  |  |  |
|                           | VSA_EState4            | 5.12039519                      |  |  |  |  |
|                           | SMR_VSA2               | 5.11992984                      |  |  |  |  |
|                           | fr_nitrile             | 5.1195979                       |  |  |  |  |
|                           | fr_SH                  | 5.11770179                      |  |  |  |  |
|                           | SlogP_VSA12            | 5.1172063                       |  |  |  |  |
|                           | fr_sulfide             | 5.11650573                      |  |  |  |  |
|                           | fr_term_acetylene      | 5.11623714                      |  |  |  |  |
|                           | fr_aryl_methyl         | 5.11556309                      |  |  |  |  |
|                           | fr_C_S                 | 5.11542518                      |  |  |  |  |
|                           | MinAbsEStateIndex      | 5.114958                        |  |  |  |  |
|                           | fr_thiophene           | 5.11478889                      |  |  |  |  |
|                           | Chi1n                  | 1.14136999                      |  |  |  |  |
|                           | Chi2n                  | 1.1383067                       |  |  |  |  |
|                           | Chi0v                  | 1.1307961                       |  |  |  |  |
|                           | Chi0n                  | 1.13000702                      |  |  |  |  |
|                           | MolMR                  | 1.12519916                      |  |  |  |  |
| Component 2               | Chilv                  | 1.12492772                      |  |  |  |  |
|                           | Chi3n                  | 1.1122268                       |  |  |  |  |
|                           | LabuteASA              | 1.10107878                      |  |  |  |  |
|                           | NumValenceElectrons    | 1.08500496                      |  |  |  |  |
|                           | Chi4n                  | 1.08206496                      |  |  |  |  |
|                           | Chi1                   | 1.08001417                      |  |  |  |  |

|             | MolLogP             | 1.07305269 |
|-------------|---------------------|------------|
|             | HeavyAtomCount      | 1.0723785  |
|             | Kappa1              | 1.07037957 |
|             | Chi2v               | 1.06481601 |
|             | Chi0                | 1.05950481 |
|             | Chi3v               | 1.05163482 |
|             | SMR VSA5            | 1.03640199 |
|             | SlogP VSA5          | 1.02852568 |
|             | ExactMolWt          | 1.01921727 |
|             | MolWt               | 1.01827609 |
|             | PEOE VSA6           | 1.00765154 |
|             | Kappa2              | 0.98202774 |
|             | HeavyAtomMolWt      | 0.97524133 |
|             | Chi4v               | 0.95305644 |
|             | SMR_VSA1            | 0.94045757 |
|             | NumHeteroatoms      | 0.89993835 |
|             | MaxPartialCharge    | 0.89794206 |
|             | EState_VSA10        | 0.87700721 |
|             | MaxEStateIndex      | 0.87054194 |
|             | MaxAbsEStateIndex   | 0.87054194 |
|             | MinAbsPartialCharge | 0.86030133 |
|             | PEOE_VSA14          | 0.8595814  |
|             | SlogP_VSA2          | 0.84980554 |
|             | EState_VSA1         | 0.84581918 |
|             | MaxAbsPartialCharge | 0.83199405 |
|             | NOCount             | 0.79721006 |
| Component 3 | VSA_EState1         | 0.7934961  |
|             | BCUT2D_CHGHI        | 0.78801383 |
|             | NumHAcceptors       | 0.77314412 |
|             | TPSA                | 0.77000754 |
|             | Chi0                | 0.76914984 |
|             | SlogP_VSA10         | 0.76354062 |
|             | NumValenceElectrons | 0.7478514  |
|             | HeavyAtomMolWt      | 0.7423416  |
|             | HeavyAtomCount      | 0.74058984 |
|             | Kappa1              | 0.73293582 |
|             | ExactMolWt          | 0.72916723 |
|             | MolWt               | 0.72819776 |
|             | VSA_EState2         | 0.72702933 |

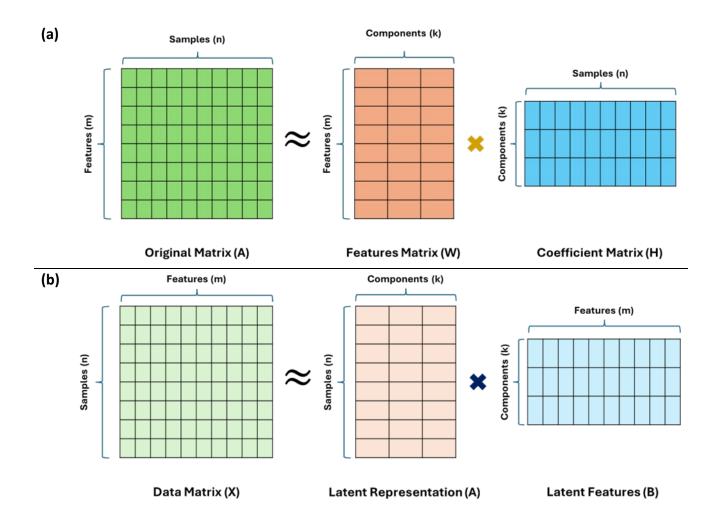
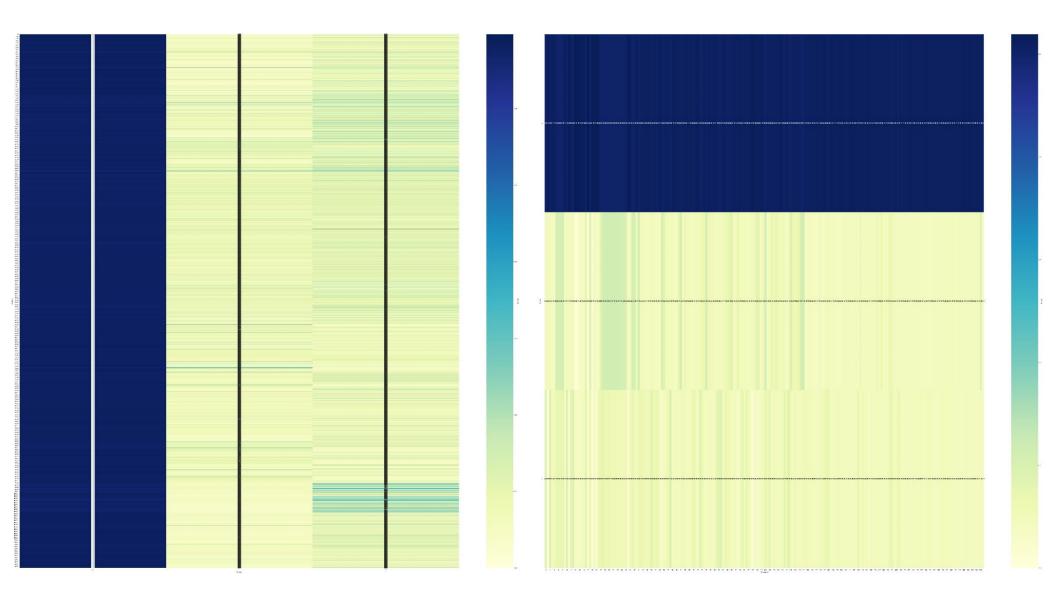
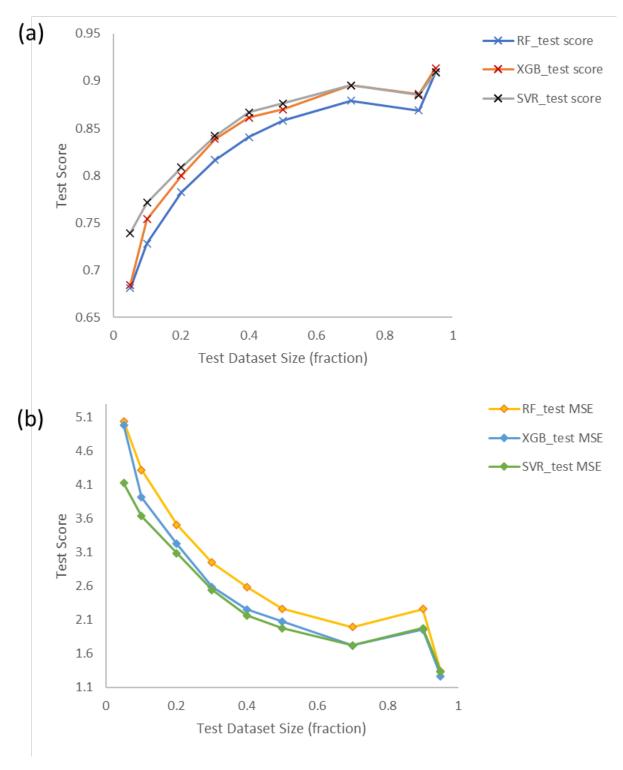


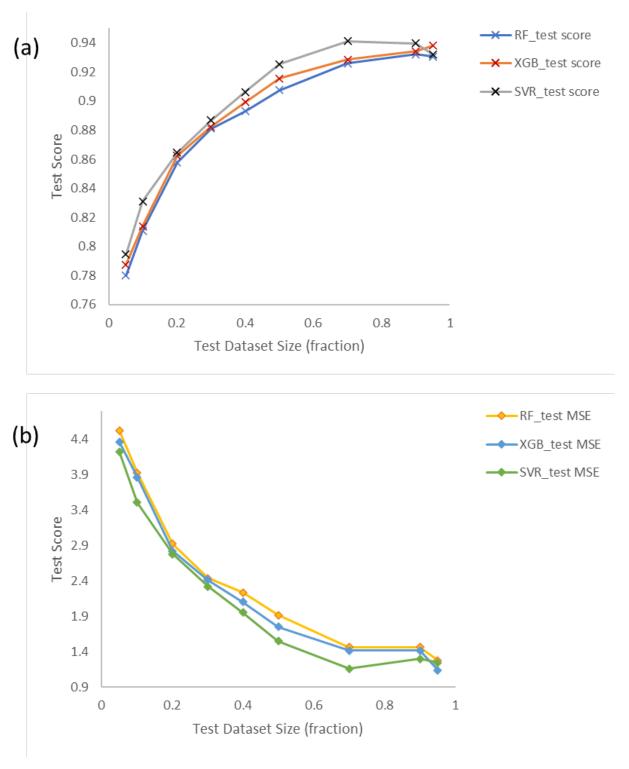
Figure S1: NNMF concept simple schematics



**Figure S2:** NNMF results for  $(n_{descriptors} = 208 \& n_{components} = 3)$ 



**Figure S3:** Effect of dataset size on (a) the accuracy/score and (b) mean squared error of ML modeling using RF, XGB and SVR for Polarization solubility parameter



**Figure S4:** Effect of dataset size on (a) the accuracy/score and (b) mean squared error of ML modeling using RF, XGB and SVR for Hydrogen bonding solubility parameter

**Table S2:** Decision fusion results (Solubility\_2 "δ<sub>P</sub>")

| Fusion No. |                |      | N                     | on-learna | able Fusi      | Learnable Fusion |                           |      |                |      |                |      |                |      |
|------------|----------------|------|-----------------------|-----------|----------------|------------------|---------------------------|------|----------------|------|----------------|------|----------------|------|
|            | Average-based  |      | R <sup>2</sup> -based |           | MSE-based      |                  | R <sup>2</sup> /MSE-based |      | XGB            |      | ANN            |      | SVR            |      |
|            | R <sup>2</sup> | MSE  | R <sup>2</sup>        | MSE       | R <sup>2</sup> | MSE              | R <sup>2</sup>            | MSE  | R <sup>2</sup> | MSE  | R <sup>2</sup> | MSE  | R <sup>2</sup> | MSE  |
| Fusion 1   | 0.94           | 0.93 | 0.94                  | 0.92      | 0.94           | 0.88             | 0.94                      | 0.87 | 0.95           | 0.75 | 0.94           | 0.76 | 0.96           | 0.59 |
| Fusion 2   | 0.96           | 0.56 | 0.96                  | 0.56      | 0.96           | 0.54             | 0.96                      | 0.54 | 0.98           | 0.25 |                |      | 0.98           | 0.20 |
| Fusion 3   | 0.99           | 0.15 | 0.99                  | 0.12      | 0.99           | 0.10             | 0.99                      | 0.08 |                |      |                |      | 0.99           | 0.05 |

<sup>\*</sup> All the values are rounded to the second decimal

Table S3: Decision fusion results (Solubility\_3 " $\delta_H$ ")

| Fusion No. |                | Non-learnable Fusion |                       |      |                |      |                           |      |                |      | Learnable Fusion |      |                |      |  |
|------------|----------------|----------------------|-----------------------|------|----------------|------|---------------------------|------|----------------|------|------------------|------|----------------|------|--|
|            | Average-based  |                      | R <sup>2</sup> -based |      | MSE-based      |      | R <sup>2</sup> /MSE-based |      | XGB            |      | ANN              |      | SVR            |      |  |
|            | R <sup>2</sup> | MSE                  | R <sup>2</sup>        | MSE  | R <sup>2</sup> | MSE  | R <sup>2</sup>            | MSE  | R <sup>2</sup> | MSE  | R <sup>2</sup>   | MSE  | R <sup>2</sup> | MSE  |  |
| Fusion 1   | 0.96           | 0.75                 | 0.96                  | 0.74 | 0.97           | 0.68 | 0.97                      | 0.68 | 0.97           | 0.45 | 0.97             | 0.55 | 0.98           | 0.44 |  |
| Fusion 2   | 0.98           | 0.25                 | 0.98                  | 0.25 | 0.98           | 0.23 | 0.98                      | 0.22 | 0.99           | 0.15 |                  |      | 0.99           | 0.12 |  |
| Fusion 3   | 0.99           | 0.10                 | 0.99                  | 0.10 | 0.99           | 0.09 | 0.99                      | 0.08 |                |      |                  |      | 0.99           | 0.03 |  |

<sup>\*</sup> All the values are rounded to the second decimal

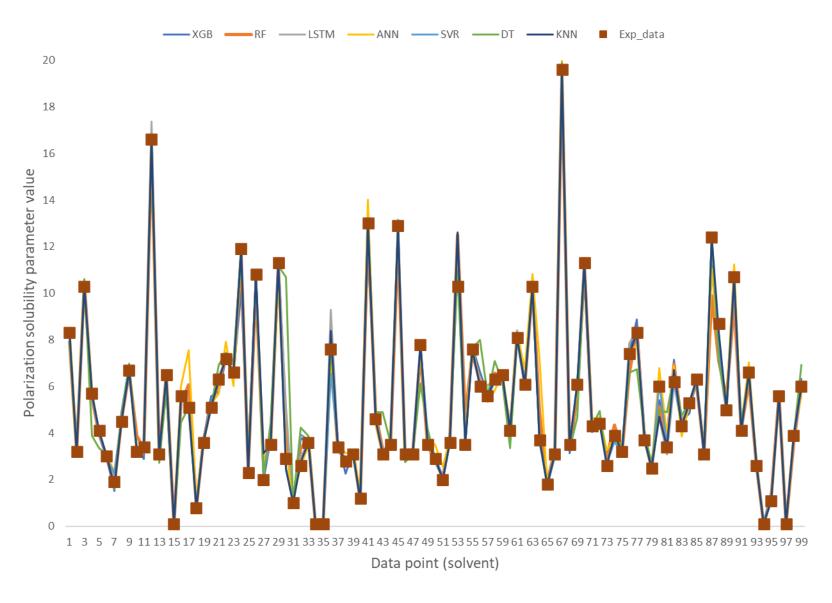


Figure S5: Results of different individual techniques (Polarization solubility parameter).

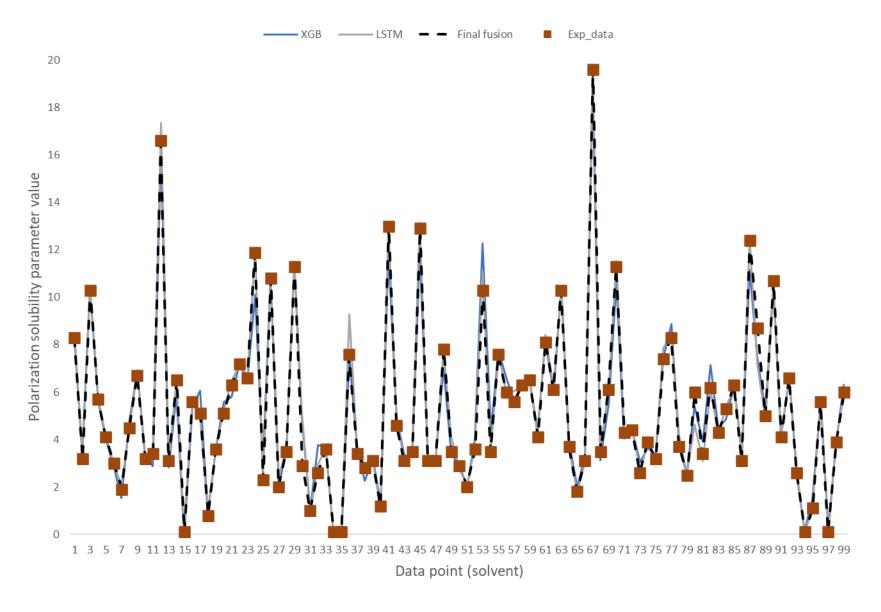
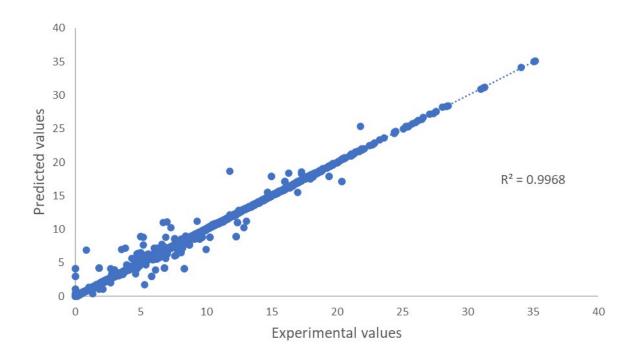


Figure S6: Results of final decision fusion vs. selected different individual techniques (Polarization solubility parameter).



**Figure S7:** Predicted Vs. experimental values of polarization solubility parameter (final decision fusion results).

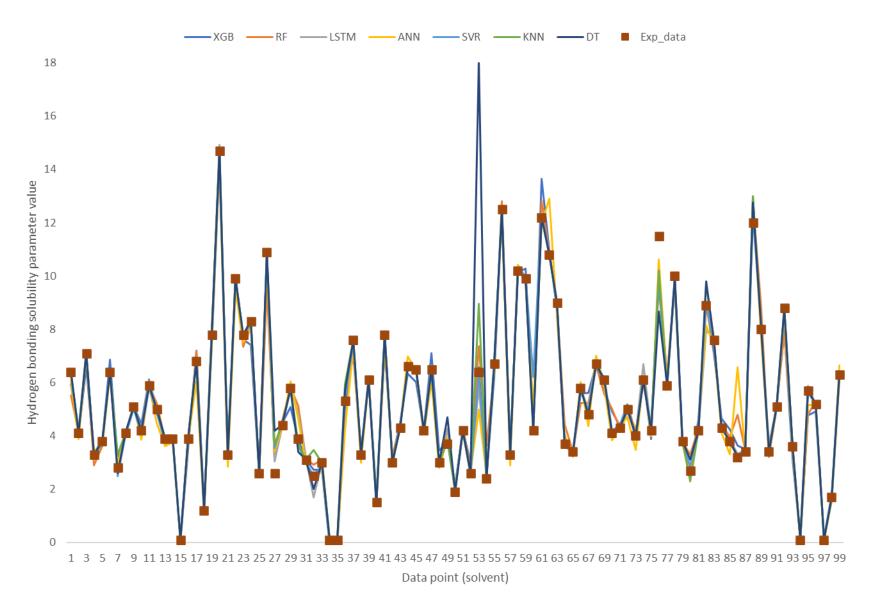


Figure S8: Results of different individual techniques (Hydrogen bonding solubility parameter).

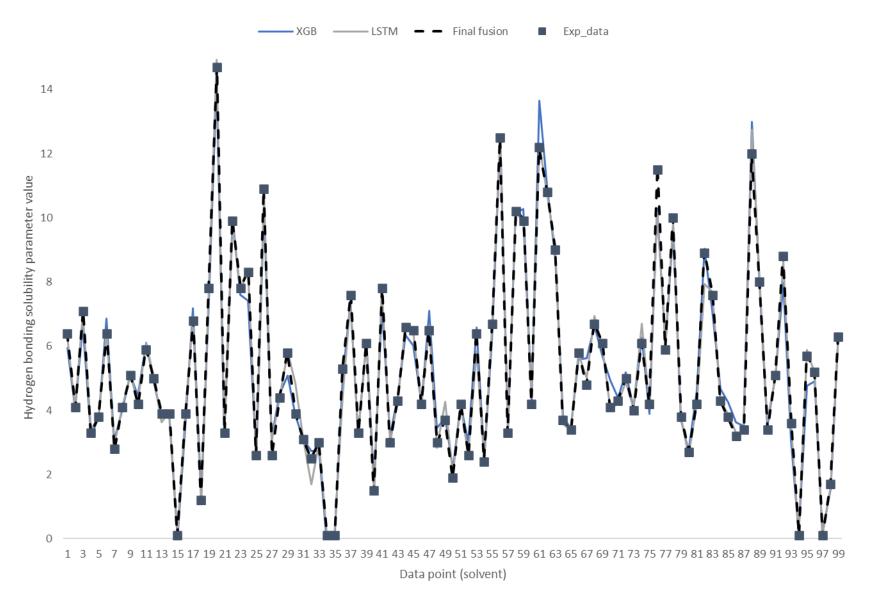
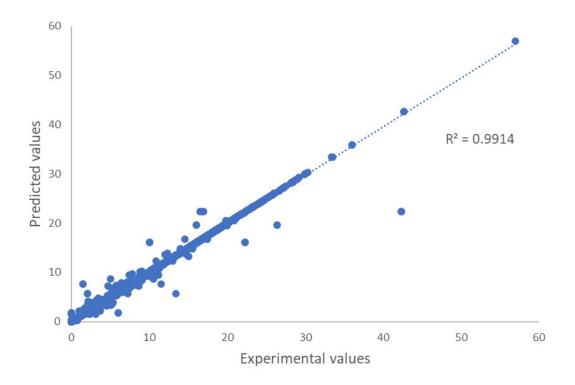


Figure S9: Results of final decision fusion vs. selected different individual techniques (Hydrogen bonding solubility parameter).



**Figure S10:** Predicted Vs. experimental values of hydrogen bonding solubility parameter (final decision fusion results).

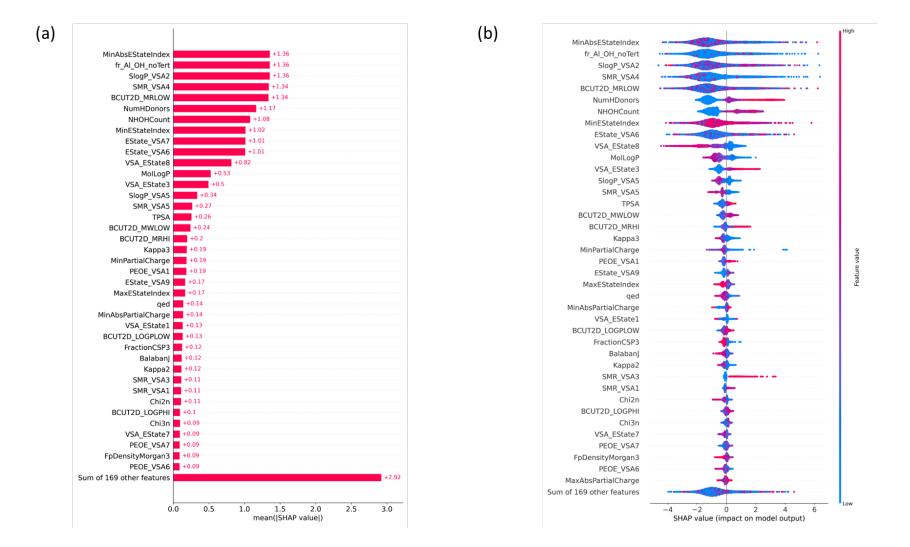


Figure S11: SHAP values of sugar cane bagasse-based lignin solvents classification based on RED (Descriptors)



Figure S12: SHAP values of sugar cane bagasse-based lignin solvents classification based on RED (Hansen solubility parameters)

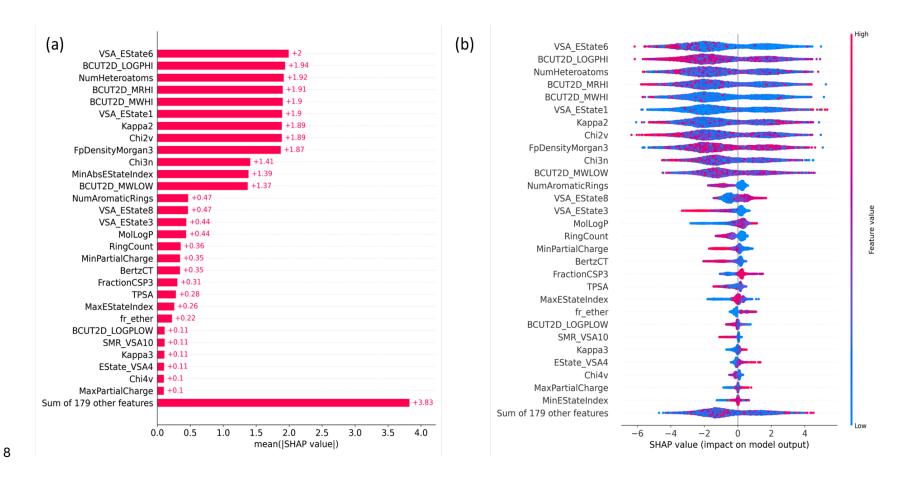


Figure S13: SHAP values of CO<sub>2</sub> solvents classification based on RED (Descriptors)

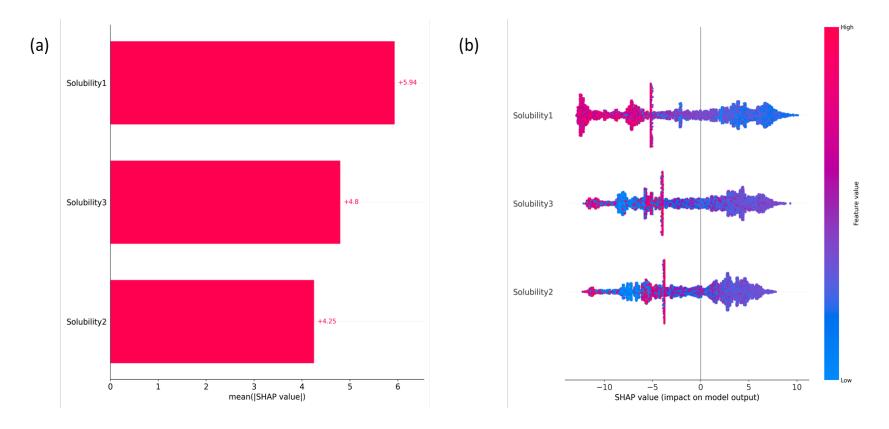


Figure S14: SHAP values of CO<sub>2</sub> solvents classification based on RED (Hansen solubility parameters)

**Table S4**: Comparison with selected previous studies considering ML models to predict solubility parameters

| Model(s)                                            | Solubility parameter(s)/representation(s)                       | Inputs                                                                                                                                                                                                    | No. of dataset points                               | Metrics                                   | Explainability | Reference |
|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------|-----------|
| Ensemble of several ML techniques and architectures | HSPs<br>Range (0 to 60)                                         | SMILES codes and extracted molecular descriptors & fingerprints                                                                                                                                           | Almost 12000 points representing different solvents | $R^2 > 0.99$ $MSE = 0.02$                 | Yes            | This work |
| GPR                                                 | HSPs<br>Range (0 to 35)                                         | Molecular shape & size, electrostatic forces, σ-profile, and molecular structure                                                                                                                          | 193                                                 | $R^{2} = 0.69-0.83$ $RMSE = 1.02-$ $2.83$ | Limited        | [1]       |
| Ensemble of tree-based models                       | HSPs<br>Range (0 to 50)                                         | Molecular weight, refractive index, boiling point, melting point, radius of gyration, van der Waals reduced volume, van der Waals area, parachor, dielectric constant, dipole moment, liquid molar volume | 1889                                                | $R^2 > 0.97$ RMSE < 0.8                   | No             | [2]       |
| LSBoost                                             | Molar solubility Range (0.003 to 0.88)                          | Critical pressure, critical temperature and acentric factor of ionic liquids (specific type of solvents). System temperature and pressure                                                                 | 1140 samples representing 24 ionic liquids          | $R^2 > 0.99$ $MSE < 0.01$                 | Limited        | [3]       |
| LightGBM                                            | Hildebrand solubility and HSPs-<br>based RED<br>Range (0 to 15) | SMILES codes and extracted molecular descriptors                                                                                                                                                          | 55272 samples representing 81 polymers              | $R^2 = 0.86 - 0.94$                       | Limited        | [4]       |

|                        |                                                                                                   |                                                                                                                                            | and 1221 solvents                                                                                                               |                                    |         |     |
|------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------|-----|
| Staking-based ensemble | Mole fraction<br>Range (0 to 1)                                                                   | Critical pressure, critical temperature and molecular weight of ionic liquids (specific type of solvents). System temperature and pressure | 4107 points of CO2<br>solubility in 17 ionic<br>liquids and 549 points of<br>H <sub>2</sub> S solubility in 10 ionic<br>liquids | $R^2 = 0.97$                       | No      | [5] |
| ANN                    | LogS<br>Range (-6 to 4)                                                                           | 16 molecular descriptors including drugs melting point and molecular weight in addition to system temperature                              | 4567 samples representing 103 drugs and 49 solvents interactions                                                                | $R^2 = 0.98$                       | Limited | [6] |
| LightGBM               | LogS<br>Range (-6 to 4)                                                                           | Fingerprints extracted from canonical SMILES codes and system temperatures                                                                 | 5081 samples representing 266 compounds and 123 organic solvents interactions at different temperatures                         | $R^2 = 0.91$ $MSE < 0.16$          | No      | [7] |
| ANN                    | HSPs<br>Range (0 to 20)                                                                           | Polymer films-solvent contact angle,<br>solvent surface tension and solvent<br>viscosity                                                   | 70 samples representing 5 polymer films and 14 solvents interactions                                                            | $R^2 = 0.85 - 0.93$<br>RMSE = 1.24 | No      | [8] |
| ANN (Classification)   | Hildebrand solubility and HSPs (to determine the good and bad solvents for proper classification) | Polymers molecular descriptors & fingerprints besides solvents one-hot coding representations                                              | 11958 polymer-solvent<br>combinations and a total<br>of 8469 polymer-<br>nonsolvent pairs                                       | Classification accuracy = 93%      | No      | [9] |

|                                                                   |                                                                            |                                                                                                                                                                                                                                                               | representing 24 solvent and 4595 polymers                                                                                   |                                           |         |      |
|-------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------|------|
| Gradient Boosting and Bagging regressors (among 40 ML techniques) | HSPs<br>Range (0 to 30)                                                    | Molecular descriptors & fingerprints                                                                                                                                                                                                                          | 252 points representing various green solvents                                                                              | $R^2 = 0.35 - 0.78$                       | No      | [10] |
| NLP-based<br>models<br>(ChemBERTa)                                | HSPs<br>Range (0 to 40)                                                    | SMILES codes                                                                                                                                                                                                                                                  | 1200 points representing organic molecules                                                                                  | $R^{2} = 0.41-0.73$ $RMSE = 0.83-$ $2.83$ | No      | [11] |
| ANN, SVM, RF, ExtraTrees, Bagging regressor and GPR               | LogS<br>Range (-12 to 4)                                                   | 14 descriptors representing the interactions between solutes and solvents (water & organic compounds) in addition to molecular properties of both solutes & solvents. They include solvation energy, solute melting point and solvent accessible surface area | Over 2500 points representing the interactions between different solutes and solvents (water, benzene, ethanol and acetone) | $R^{2} = 0.42-0.93$ $RMSE = 0.54-$ $0.83$ | Limited | [12] |
| SVM                                                               | Hildebrand solubility Range (15 to 35) HSPs-related RED Range (0.3 to 2.5) | Heat capacity, TPSA, melting temperature, molar volume, density, molecular weight and system temperature                                                                                                                                                      | 548 points representing the interaction between 100 ionic liquids and different metal oxides                                | $R^{2} = 0.98-0.99$ $RMSE = 0.03-$ $0.05$ | No      | [13] |

|                                                                                   |                                                                        |                                                                                                                                                                                                                       | including zinc oxide (ZnO)                                                                                                                                     |                                             |         |      |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|------|
| Multilinear regression (MLR) and kernel ridge regression (KRR)                    | Hildebrand solubility represented by experimental heat of vaporization | 15 molecular descriptors including<br>number of heavy atoms, chemical<br>hardness, atomization energy and<br>electronegativity                                                                                        | Below 100 points representing the interaction between 61 small molecule solvents and 16 polymers                                                               | $R^2 = 0.82$ RMSE = 4.35                    | No      | [14] |
| RF, Conditional Inference trees (CTREE) & Partial Least Squares Regression (PLSR) | Mole fraction<br>Range (0 to 1)                                        | Quantum chemical and molecular<br>orbital-based descriptors of ionic<br>liquids including polarizabilities and<br>charge partial surface areas (CPSA)                                                                 | 10848 points representing solubility of CO <sub>2</sub> in 185 different ionic liquids at various temperatures & pressures                                     | $R^{2} = 0.35 - 0.96$ $RMSE = 0.004 - 0.21$ | Limited | [15] |
| Gradient<br>Boosting (GB)<br>and RF                                               | Material solvent extraction yield Range (0 "0%" - 1 "100%")            | Molecular descriptors/fingerprints of ionic liquids, herbaceous biomass composition (lignin, cellulose & hemicellulose percentages) and solvent extraction conditions (temperature, pressure & solvent concentration) | 110 points representing the efficiency (yield) of lignin extraction from herbaceous biomasses by ionic liquids as sustainable solvents at different conditions | $R^2 = 0.63-0.73$ $MSE = 0.02-0.03$         | Yes     | [16] |

#### **Additional References**

- [1] B. Sanchez-Lengeling, L. M. Roch, J. D. Perea, S. Langner, C. J. Brabec, and A. Aspuru-Guzik, "A Bayesian approach to predict solubility parameters," *Adv. Theory Simulations*, vol. 2, no. 1, p. 1800069, 2019.
- P. Hu, Z. Jiao, Z. Zhang, and Q. Wang, "Development of solubility prediction models with ensemble learning," *Ind.* \& Eng. Chem. Res., vol. 60, no. 30, pp. 11627–11635, 2021.
- [3] Y. Zhang and X. Xu, "Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids," *New J. Chem.*, vol. 44, no. 47, pp. 20544–20567, 2020.
- [4] T.-L. Liu, L.-Y. Liu, F. Ding, and Y.-Q. Li, "A machine learning study of polymer-solvent interactions," *Chinese J. Polym. Sci.*, vol. 40, no. 7, pp. 834–842, 2022.
- [5] H. Feng, P. Zhang, W. Qin, W. Wang, and H. Wang, "Estimation of solubility of acid gases in ionic liquids using different machine learning methods," *J. Mol. Lig.*, vol. 349, p. 118413, 2022.
- [6] K. Ge and Y. Ji, "Novel computational approach by combining machine learning with molecular thermodynamics for predicting drug solubility in solvents," *Ind.* \& Eng. Chem. Res., vol. 60, no. 25, pp. 9259–9268, 2021.
- [7] Z. Ye and D. Ouyang, "Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms," *J. Cheminform.*, vol. 13, no. 1, p. 98, 2021.
- [8] N. AlQasas and D. Johnson, "The use of neural network modeling for the estimation of the Hansen solubility parameters of polymer films from contact angle measurements," *Surfaces and Interfaces*, vol. 44, p. 103721, 2024.
- [9] A. Chandrasekaran, C. Kim, S. Venkatram, and R. Ramprasad, "A deep learning solvent-selection paradigm powered by a massive solvent/nonsolvent database for polymers," *Macromolecules*, vol. 53, no. 12, pp. 4764–4769, 2020.
- [10] A. Mahmood, Y. Sandali, and J.-L. Wang, "Easy and fast prediction of green solvents for small molecule donor-based organic solar cells through machine learning," *Phys. Chem. Chem. Phys.*, vol. 25, no. 15, pp. 10417–10426, 2023.
- [11] J. Pang, A. W. R. Pine, and A. Sulemana, "Using natural language processing (NLP)-inspired molecular embedding approach to predict Hansen solubility parameters," *Digit. Discov.*, vol. 3, no. 1, pp. 145–154, 2024.
- [12] S. Boobier, D. R. J. Hose, A. J. Blacker, and B. N. Nguyen, "Machine learning with physicochemical relationships: solubility prediction in organic solvents and water," *Nat. Commun.*, vol. 11, no. 1, p. 5753, 2020.
- [13] F. Rexhepi, M. Woolever, J. Nabity, and S. Banerjee, "Metal oxide solvation with ionic liquids: A solubility parameter analysis," *J. Mol. Liq.*, p. 122314, 2023.
- [14] M. Chi, R. Gargouri, T. Schrader, K. Damak, R. Maâlej, and M. Sierka, "Atomistic descriptors for machine learning models of solubility parameters for small molecules and polymers," *Polymers* (*Basel*)., vol. 14, no. 1, p. 26, 2021.
- [15] V. Venkatraman and B. K. Alsberg, "Predicting CO2 capture of ionic liquids using machine learning," *J. CO2 Util.*, vol. 21, pp. 162–168, 2017.
- [16] K. Baran, B. Barczak, and A. Kloskowski, "Modeling lignin extraction with ionic liquids using

machine learning approach," Sci. Total Environ., p. 173234, 2024.