Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Abusitta, A., Li, M. Q., & Fung, B. C.M. (2024). Survey on explainable AI : techniques, challenges and open issues. Expert Systems With Applications, 255, 124710 (18 pages). Lien externe
Bataineh, A. S., Zulkernine, M., Abusitta, A., & Halabi, T. (2024). Detecting Poisoning Attacks in Collaborative IDSs of Vehicular Networks Using XAI and Shapley Value. ACM Journal on Autonomous Transportation Systems, -. Lien externe
Khorramfar, M., Mtawa, Y. A., Abusitta, A., & Halabi, T. (juin 2024). Credit-Based Client Selection for Resilient Model Aggregation in Federated Learning [Communication écrite]. 59th Annual IEEE International Conference on Communications (ICC 2024), Denver, CO, USA. Lien externe
Abusitta, A., Halabi, T., Bataineh, A. S., & Zulkernine, M. (juin 2024). Generative Adversarial Networks for Robust Anomaly Detection in Noisy IoT Environments [Communication écrite]. IEEE International Conference on Communications (ICC 2024), Denver, CO, USA. Lien externe
Girard, E., Yusri, R., Abusitta, A., & Aïmeur, E. (2023). An automated stable personalized selection for collaborative privacy education. International Journal on Integrating Technology in Education, 10(2), 16 pages. Lien externe
Abusitta, A., de Carvalho, G. H. S., Abdul Wahab, O., Halabi, T., Fung, B. C. M., & Al Mamoori, S. (2023). Deep learning-enabled anomaly detection for IoT systems. Internet of Things, 21, 100656 (13 pages). Lien externe
Sleit, A., AIMobaideen, W., Baarah, A. H., & Abusitta, A. (2023). An efficient pattern matching algorithm. Journal of Applied Sciences, 7(18), 2691-2695. Lien externe
Abusitta, A. (2023). A visual cryptography based digital image copyright protection. Journal of Information Security and Applications, 3(2), 96-104. Lien externe
Esmaeilpour, M., Chaalia, N., Abusitta, A., Devailly, F.-X., Maazoun, W., & Cardinal, P. (2022). Bi-discriminator GAN for tabular data synthesis. Pattern Recognition Letters, 159, 204-210. Lien externe
Halabi, T., Abusitta, A., Carvalho, G. H. S., & Fung, B. C. M. (juillet 2022). Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications [Communication écrite]. 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022), Bol, Croatia (6 pages). Lien externe
Li, M. Q., Fung, B. C. M., & Abusitta, A. (juillet 2022). On the Effectiveness of Interpretable Feedforward Neural Network [Communication écrite]. International Joint Conference on Neural Networks (IJCNN 2022), Padua, Italy (8 pages). Lien externe
Abusitta, A., Abdul Wahab, O., & Fung, B. C. M. (juillet 2021). VirtualGAN: Reducing mode collapse in generative adversarial networks using virtual mapping [Communication écrite]. International Joint Conference on Neural Networks (IJCNN 2021), Shenzhen, China (6 pages). Lien externe
Abusitta, A., Li, M., Diwan, A., Hill, J., & Fung, B. (2021). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-217794). Non disponible
Li, M., Diwan, A., Abusitta, A., & Fung, B. (2021). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-217794). Non disponible
Li, M., Diwan, A., Abusitta, A., Mahdavifar, S., & Fung, B. (2021). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-217794). Non disponible
Abusitta, A., Li, M. Q., & Fung, B. C. M. (2021). Malware classification and composition analysis: A survey of recent developments. Journal of Information Security and Applications, 59, 102828 (17 pages). Lien externe
Abusitta, A., Halabi, T., & Abdul Wahab, O. (août 2021). ROBUST: Deep learning for malware detection under changing environments [Communication écrite]. 1st Workshop on Adverse Impacts and Collateral Effects of Artificial Intelligence Technologies (AIofAI 2021), Montréal, Qc, Canada (13 pages). Lien externe
Yusri, R., Abusitta, A., & Aïmeur, E. (2021). Teens-Online: a Game Theory-Based Collaborative Platform for Privacy Education. International Journal of Artificial Intelligence in Education, 31(4), 726-768. Lien externe
Abusitta, A., Abdul Wahab, O., & Halabi, T. (2020). Deep learning for proactive cooperative malware detection system. (Rapport n° G-2020-23 EIW12). Lien externe
Li, M., Abusitta, A., & Fung, B. (2020). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-207117). Non disponible
Yusri, R., Abusitta, A., & Aïmeur, E. (juillet 2020). A Stable Personalised Partner Selection for Collaborative Privacy Education [Communication écrite]. 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP 2020), Genoa, Italy. Lien externe
Abusitta, A., Bellaïche, M., & Dagenais, M. (2019). Multi-cloud cooperative intrusion detection system: trust and fairness assurance. Annals of Telecommunications, 74(9-10), 637-653. Lien externe
Abusitta, A., Bellaïche, M., Dagenais, M., & Halabi, T. (2019). A deep learning approach for proactive multi-cloud cooperative intrusion detection system. Future Generation Computer Systems-the International Journal of Escience, 98, 308-318. Lien externe
Halabi, T., Bellaïche, M., & Abusitta, A. (février 2019). Toward secure resource allocation in mobile cloud computing : a matching game [Communication écrite]. International Conference on Computing, Networking and Communications (ICNC 2019), Honolulu, HI, USA. Lien externe
Abusitta, A., Li, M., & Fung, B. (2019). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-207117). Non disponible
Abusitta, A., Aïmeur, E., & Abdul Wahab, O. (août 2020). Generative adversarial networks for mitigating biases in machine learning systems [Communication écrite]. 24th European Conference on Artificial Intelligence (ECAI 2019), Santiago de Compostela, Spain (11 pages). Lien externe
Abusitta, A. (2018). Theoretical and Applied Foundations for Intrusion Detection in Single and Federated Clouds [Thèse de doctorat, École Polytechnique de Montréal]. Disponible
Abusitta, A., Bellaïche, M., & Dagenais, M. (2018). On trustworthy federated clouds : a coalitional game approach. Computer Networks, 145, 52-63. Lien externe
Halabi, T., Bellaïche, M., & Abusitta, A. (août 2018). Online allocation of cloud resources based on security satisfaction [Communication écrite]. 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE International Conference on Big Data Science and Engineering (Trustcom/BigDataSE 2018), New York, N.Y.. Lien externe
Halabi, T., Bellaïche, M., & Abusitta, A. (juin 2018). Cloud security up for auction : a DSIC online mechanism for secure IaaS resource allocation [Communication écrite]. Conference on Communications and Network Security (CSNET 2018), Paris, France (6 pages). Lien externe
Bellaïche, M., Abusitta, A., & Halabi, T. (juin 2018). A cooperative game for online cloud federation formation based on security risk assessment [Communication écrite]. 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud 2018) / 2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom 2018), Shanghai, China. Lien externe
Abusitta, A., Bellaïche, M., & Dagenais, M. (février 2018). A trust-based game theoretical model for cooperative intrusion detection in multi-cloud environments [Communication écrite]. 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN 2018), Paris, France (8 pages). Disponible
Abusitta, A., Bellaïche, M., & Dagenais, M. (2018). An SVM-based framework for detecting DoS attacks in virtualized clouds under changing environment. Journal of Cloud Computing : Advances, Systems and Applications, 7(9), 9 (18 pages). Disponible
Sleit, A., & Abusitta, A. (2007). A visual cryptography bassed watermark technology for individual and group images. Journal of Systemics, Cybernetics and Informatics, 5(2), 24-32. Lien externe
Sleit, A., & Abusitta, A. (juillet 2006). A watermark technology based on visual cryptography [Communication écrite]. 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, Florida, USA. Non disponible
Sleit, A., & Abusitta, A. (mai 2006). A watermark technology based on visual cryptography [Communication écrite]. 4th International Multiconference on Computer Science and Information Technology (CSIT 2006), Amman, Jordan (11 pages). Non disponible