<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Abusitta, Adel"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Nombre de documents: 37

Abusitta, A., Li, M. Q., & Fung, B. C.M. (2024). Survey on explainable AI : techniques, challenges and open issues. Expert Systems With Applications, 255, 124710 (18 pages). Lien externe

Alhashemi, W. J., Fung, B. C. M., Abusitta, A., & Fachkha, C. (novembre 2024). CSGraph2Vec: Distributed Graph-Based Representation Learning for Assembly Functions [Communication écrite]. IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE 2024), Taichung, Taiwan. Lien externe

Bataineh, A. S., Zulkernine, M., Abusitta, A., & Halabi, T. (2024). Detecting Poisoning Attacks in Collaborative IDSs of Vehicular Networks Using XAI and Shapley Value. ACM Journal on Autonomous Transportation Systems, -. Lien externe

Khorramfar, M., Mtawa, Y. A., Abusitta, A., & Halabi, T. (juin 2024). Credit-Based Client Selection for Resilient Model Aggregation in Federated Learning [Communication écrite]. 59th Annual IEEE International Conference on Communications (ICC 2024), Denver, CO, USA. Lien externe

Abusitta, A., Halabi, T., Bataineh, A. S., & Zulkernine, M. (juin 2024). Generative Adversarial Networks for Robust Anomaly Detection in Noisy IoT Environments [Communication écrite]. IEEE International Conference on Communications (ICC 2024), Denver, CO, USA. Lien externe

Girard, E., Yusri, R., Abusitta, A., & Aïmeur, E. (2023). An automated stable personalized selection for collaborative privacy education. International Journal on Integrating Technology in Education, 10(2), 16 pages. Lien externe

Abusitta, A., de Carvalho, G. H. S., Abdul Wahab, O., Halabi, T., Fung, B. C. M., & Al Mamoori, S. (2023). Deep learning-enabled anomaly detection for IoT systems. Internet of Things, 21, 100656 (13 pages). Lien externe

Sleit, A., AIMobaideen, W., Baarah, A. H., & Abusitta, A. (2023). An efficient pattern matching algorithm. Journal of Applied Sciences, 7(18), 2691-2695. Lien externe

Abusitta, A. (2023). A visual cryptography based digital image copyright protection. Journal of Information Security and Applications, 3(2), 96-104. Lien externe

Esmaeilpour, M., Chaalia, N., Abusitta, A., Devailly, F.-X., Maazoun, W., & Cardinal, P. (2022). Bi-discriminator GAN for tabular data synthesis. Pattern Recognition Letters, 159, 204-210. Lien externe

Halabi, T., Abusitta, A., Carvalho, G. H. S., & Fung, B. C. M. (juillet 2022). Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications [Communication écrite]. 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022), Bol, Croatia (6 pages). Lien externe

Li, M. Q., Fung, B. C. M., & Abusitta, A. (juillet 2022). On the Effectiveness of Interpretable Feedforward Neural Network [Communication écrite]. International Joint Conference on Neural Networks (IJCNN 2022), Padua, Italy (8 pages). Lien externe

Abusitta, A., Abdul Wahab, O., & Fung, B. C. M. (juillet 2021). VirtualGAN: Reducing mode collapse in generative adversarial networks using virtual mapping [Communication écrite]. International Joint Conference on Neural Networks (IJCNN 2021), Shenzhen, China (6 pages). Lien externe

Abusitta, A., Li, M., Diwan, A., Hill, J., & Fung, B. (2021). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-217794). Non disponible

Li, M., Diwan, A., Abusitta, A., & Fung, B. (2021). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-217794). Non disponible

Li, M., Diwan, A., Abusitta, A., Mahdavifar, S., & Fung, B. (2021). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-217794). Non disponible

Abusitta, A., Li, M. Q., & Fung, B. C. M. (2021). Malware classification and composition analysis: A survey of recent developments. Journal of Information Security and Applications, 59, 102828 (17 pages). Lien externe

Abusitta, A., Halabi, T., & Abdul Wahab, O. (août 2021). ROBUST: Deep learning for malware detection under changing environments [Communication écrite]. 1st Workshop on Adverse Impacts and Collateral Effects of Artificial Intelligence Technologies (AIofAI 2021), Montréal, Qc, Canada (13 pages). Lien externe

Yusri, R., Abusitta, A., & Aïmeur, E. (2021). Teens-Online: a Game Theory-Based Collaborative Platform for Privacy Education. International Journal of Artificial Intelligence in Education, 31(4), 726-768. Lien externe

Abusitta, A., Abdul Wahab, O., & Halabi, T. (2020). Deep learning for proactive cooperative malware detection system. (Rapport n° G-2020-23 EIW12). Lien externe

Li, M., Abusitta, A., & Fung, B. (2020). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-207117). Non disponible

Yusri, R., Abusitta, A., & Aïmeur, E. (juillet 2020). A Stable Personalised Partner Selection for Collaborative Privacy Education [Communication écrite]. 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP 2020), Genoa, Italy. Lien externe

Abusitta, A., Bellaïche, M., & Dagenais, M. (2019). Multi-cloud cooperative intrusion detection system: trust and fairness assurance. Annals of Telecommunications, 74(9-10), 637-653. Lien externe

Abusitta, A., Bellaïche, M., Dagenais, M., & Halabi, T. (2019). A deep learning approach for proactive multi-cloud cooperative intrusion detection system. Future Generation Computer Systems-the International Journal of Escience, 98, 308-318. Lien externe

Halabi, T., Bellaïche, M., & Abusitta, A. (février 2019). Toward secure resource allocation in mobile cloud computing : a matching game [Communication écrite]. International Conference on Computing, Networking and Communications (ICNC 2019), Honolulu, HI, USA. Lien externe

Abusitta, A., Li, M., & Fung, B. (2019). AI-powered assembly code analytics for discerning malware intent. (Rapport d'étude - Cycles supérieurs n° W7714-207117). Non disponible

Abusitta, A., Aïmeur, E., & Abdul Wahab, O. (août 2020). Generative adversarial networks for mitigating biases in machine learning systems [Communication écrite]. 24th European Conference on Artificial Intelligence (ECAI 2019), Santiago de Compostela, Spain (11 pages). Lien externe

Abusitta, A. (2018). Theoretical and Applied Foundations for Intrusion Detection in Single and Federated Clouds [Thèse de doctorat, École Polytechnique de Montréal]. Disponible

Abusitta, A., Bellaïche, M., & Dagenais, M. (2018). On trustworthy federated clouds : a coalitional game approach. Computer Networks, 145, 52-63. Lien externe

Halabi, T., Bellaïche, M., & Abusitta, A. (août 2018). Online allocation of cloud resources based on security satisfaction [Communication écrite]. 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE International Conference on Big Data Science and Engineering (Trustcom/BigDataSE 2018), New York, N.Y.. Lien externe

Halabi, T., Bellaïche, M., & Abusitta, A. (juin 2018). Cloud security up for auction : a DSIC online mechanism for secure IaaS resource allocation [Communication écrite]. Conference on Communications and Network Security (CSNET 2018), Paris, France (6 pages). Lien externe

Bellaïche, M., Abusitta, A., & Halabi, T. (juin 2018). A cooperative game for online cloud federation formation based on security risk assessment [Communication écrite]. 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud 2018) / 2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom 2018), Shanghai, China. Lien externe

Abusitta, A., Bellaïche, M., & Dagenais, M. (février 2018). A trust-based game theoretical model for cooperative intrusion detection in multi-cloud environments [Communication écrite]. 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN 2018), Paris, France (8 pages). Disponible

Abusitta, A., Bellaïche, M., & Dagenais, M. (2018). An SVM-based framework for detecting DoS attacks in virtualized clouds under changing environment. Journal of Cloud Computing : Advances, Systems and Applications, 7(9), 9 (18 pages). Disponible

Sleit, A., & Abusitta, A. (2007). A visual cryptography bassed watermark technology for individual and group images. Journal of Systemics, Cybernetics and Informatics, 5(2), 24-32. Lien externe

Sleit, A., & Abusitta, A. (juillet 2006). A watermark technology based on visual cryptography [Communication écrite]. 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, Florida, USA. Non disponible

Sleit, A., & Abusitta, A. (mai 2006). A watermark technology based on visual cryptography [Communication écrite]. 4th International Multiconference on Computer Science and Information Technology (CSIT 2006), Amman, Jordan (11 pages). Non disponible

Liste produite: Sun Dec 22 04:15:39 2024 EST.