Adel Abusitta, Talal Halabi, Ahmed Saleh Bataineh and Mohammad Zulkernine
Paper (2024)
An external link is available for this itemDepartment: | Department of Computer Engineering and Software Engineering |
---|---|
ISBN: | 9781728190549 |
PolyPublie URL: | https://publications.polymtl.ca/59296/ |
Conference Title: | IEEE International Conference on Communications (ICC 2024) |
Conference Location: | Denver, CO, USA |
Conference Date(s): | 2024-06-09 - 2024-06-13 |
Publisher: | IEEE |
DOI: | 10.1109/icc51166.2024.10622882 |
Official URL: | https://doi.org/10.1109/icc51166.2024.10622882 |
Date Deposited: | 24 Sep 2024 16:18 |
Last Modified: | 08 Apr 2025 14:41 |
Cite in APA 7: | Abusitta, A., Halabi, T., Bataineh, A. S., & Zulkernine, M. (2024, June). Generative Adversarial Networks for Robust Anomaly Detection in Noisy IoT Environments [Paper]. IEEE International Conference on Communications (ICC 2024), Denver, CO, USA. https://doi.org/10.1109/icc51166.2024.10622882 |
---|---|
Statistics
Dimensions