Waleed Tahir, Sreekanth Kura, Jiabei Zhu, Xiaojun Cheng, Rafat Damseh, Fetsum Tadesse, Alex Seibel, Blaire S. Lee, Frédéric Lesage, Sava Sakadzic, David A. Boas et Lei Tian
Article de revue (2021)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (4MB) |
Résumé
Objective and Impact Statement. Segmentation of blood vessels from two-photon microscopy (2PM) angiograms of brains has important applications in hemodynamic analysis and disease diagnosis. Here, we develop a generalizable deep learning technique for accurate 2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM setups. The technique is computationally efficient, thus ideal for large-scale neurovascular analysis. Introduction. Vascular segmentation from 2PM angiograms is an important first step in hemodynamic modeling of brain vasculature. Existing segmentation methods based on deep learning either lack the ability to generalize to data from different imaging systems or are computationally infeasible for large-scale angiograms. In this work, we overcome both these limitations by a method that is generalizable to various imaging systems and is able to segment large-scale angiograms. Methods. We employ a computationally efficient deep learning framework with a loss function that incorporates a balanced binary-cross-entropy loss and total variation regularization on the network’s output. Its effectiveness is demonstrated on experimentally acquired in vivo angiograms from mouse brains of dimensions up to 808 × 808 × 702 μm. Results. To demonstrate the superior generalizability of our framework, we train on data from only one 2PM microscope and demonstrate high-quality segmentation on data from a different microscope without any network tuning. Overall, our method demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3× larger depth compared to the state-of-the-art. Conclusion. Our work provides a generalizable and computationally efficient anatomical modeling framework for brain vasculature, which consists of deep learning-based vascular segmentation followed by graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater scales that were inaccessible before.
Renseignements supplémentaires: | Le DOI présent sur le document (https://doi.org/10.34133/2021/8620932) ne fonctionne pas. |
---|---|
Sujet(s): | 1900 Génie biomédical > 1900 Génie biomédical |
Département: | Institut de génie biomédical |
Organismes subventionnaires: | NIH |
Numéro de subvention: | R01EB021018-04S2 |
URL de PolyPublie: | https://publications.polymtl.ca/9462/ |
Titre de la revue: | BME Frontiers (vol. 2021) |
Maison d'édition: | Science Partner Journals |
DOI: | 10.34133/2020/8620932 |
URL officielle: | https://doi.org/10.34133/2020/8620932 |
Date du dépôt: | 15 sept. 2023 15:24 |
Dernière modification: | 27 sept. 2024 12:38 |
Citer en APA 7: | Tahir, W., Kura, S., Zhu, J., Cheng, X., Damseh, R., Tadesse, F., Seibel, A., Lee, B. S., Lesage, F., Sakadzic, S., Boas, D. A., & Tian, L. (2021). Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning. BME Frontiers, 2021, 8620932 (12 pages). https://doi.org/10.34133/2020/8620932 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions