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Objective and Impact Statement. Segmentation of blood vessels from two-photon microscopy (2PM) angiograms of brains has
important applications in hemodynamic analysis and disease diagnosis. Here, we develop a generalizable deep learning
technique for accurate 2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM setups. The
technique is computationally efficient, thus ideal for large-scale neurovascular analysis. Introduction. Vascular segmentation
from 2PM angiograms is an important first step in hemodynamic modeling of brain vasculature. Existing segmentation methods
based on deep learning either lack the ability to generalize to data from different imaging systems or are computationally
infeasible for large-scale angiograms. In this work, we overcome both these limitations by a method that is generalizable to
various imaging systems and is able to segment large-scale angiograms. Methods. We employ a computationally efficient deep
learning framework with a loss function that incorporates a balanced binary-cross-entropy loss and total variation regularization
on the network’s output. Its effectiveness is demonstrated on experimentally acquired in vivo angiograms from mouse brains of
dimensions up to 808 × 808 × 702 μm. Results. To demonstrate the superior generalizability of our framework, we train on data
from only one 2PM microscope and demonstrate high-quality segmentation on data from a different microscope without any
network tuning. Overall, our method demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3×
larger depth compared to the state-of-the-art. Conclusion. Our work provides a generalizable and computationally efficient
anatomical modeling framework for brain vasculature, which consists of deep learning-based vascular segmentation followed by
graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater scales that were
inaccessible before.

1. Introduction

The hemodynamic response to neural activation has become
a vital tool in understanding brain function and pathologies
[1]. In particular, measuring vascular dynamics has proved
to be important for the early diagnosis of critical cerebrovas-
cular and neurological disorders, such as stroke and Alzhei-
mer’s disease [2]. Existing tools for the measurement of
cerebral vascular dynamics rely on functional imaging tech-

niques, for example, functional magnetic resonance imaging
(fMRI), positive emission tomography (PET), and optical
imaging [1, 3]. Importantly, mathematical models have been
proposed for these neuroimaging methods, which provide
valuable insight into the relation between the measured sig-
nals, and the underlying physiological parameters, such as
cerebral blood flow, oxygen consumption, and rate of metab-
olism [4–7]. These mathematical models often require a
topological representation of the blood vessels as a graph of
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spatially distributed nodes, connected via edges [5, 7]. These
vascular graphs are usually estimated from two-photon
microscopy (2PM) angiograms of the mouse brain [5], and
segmentation of blood vessels is generally the first step in this
process [8]. Vascular segmentation from cerebral 2PM angio-
grams, however, is a challenging task, especially for in vivo
imaging. Current state-of-the-art methods for this task [9,
10] suffer from limited computational speed, restricting their
usefulness to only small-scale volumetric regions of the brain.
Furthermore, due to rapid deterioration of measurement con-
trast with imaging depth in 2PM, these methods have been
unable to demonstrate effective segmentation for vasculature
deep beneath the brain surface. In this work, we address these
limitations and present a computationally efficient framework
for 2PM vascular segmentation that allows us to effectively
process much larger regions of the mouse brain compared to
existing methods at significantly faster computation speed in
terms of voxels segmented per second. Our method also dem-
onstrates accurate segmentation for significantly deeper vas-
culature compared to the state-of-the-art.

Vascular segmentation involves assigning a binary label
to each voxel of the input angiogram to indicate whether or
not it is part of a blood vessel. This task is challenging, espe-
cially when dealing with 2PM angiograms, as the measure-
ment contrast decreases sharply with imaging depth due to
multiple scattering and background fluorescence [11]. Addi-
tional sources of measurement noise include motion artifact
corruption during in vivo imaging, large pial vessels on the
cortical surface, and densely packed vasculature, making
the segmentation task nontrivial. In the presence of these
challenges, a number of techniques have been employed for
vascular segmentation, including methods based on the Hes-
sian matrix [12, 13], tracing [14], optimally oriented flux
[15], and geometric flow [16]. However, in practice, these
methods demonstrate limited segmentation quality [8].

In recent years, techniques based on deep learning have
shown significant improvement over traditional methods
for 2PM vascular segmentation [8–10, 17]. One of the first
works in this line was presented by Teikari et al. in their pre-
print study [17], who proposed a hybrid 2D/3D deep neural
network (DNN) for the segmentation task. Their method uti-
lized angiograms with shallow imaging depths (less than
100μm) and was limited by computation speed. The segmen-
tation quality was improved upon by Haft et al. [10] by using
an end-to-end 3D segmentation DNN. This model, however,
similar to Teikari et al., was also limited by slow computation
and required about one month to train on a dataset consist-
ing of one annotated angiogram of dimensions 292 × 292 ×
200 μm. Damseh et al. [8] improved upon this limitation
and were able to process much larger datasets with faster
computation speed in terms of voxels segmented per second.
Their framework used a DNN based on the DenseNet archi-
tecture [18], which processed the 3D angiograms by seg-
menting 2D slices one-by-one, and demonstrated better
segmentation quality compared to previous methods. How-
ever, this DNN did not generalize with respect to various
imaging setups, i.e., it performed good segmentation only
for 2PM angiograms acquired on the same setup as the
training data. Ideally, one would like to be able to segment

angiograms from any 2PM microscope once the network has
been trained. In order to overcome this limitation, Gur et al.
[9] recently proposed an unsupervisedDNNbased on the active
contours method and demonstrated improved generalization
capability compared to supervisedmodels [8, 10, 17], with faster
segmentation speed. However, this method still suffers from
excessive training and inference times and high computational
cost. Furthermore, the lack of “supervised” information makes
it difficult to segment deep vasculature, as severe noise corrup-
tion makes the task very challenging, even when using active
contours [19]. These challenges limited its effectiveness to
small-scale angiograms, with up to 200μm imaging depth.
Therefore, there is a need for a vascular segmentation method
that is not only able to generalize to different 2PM imaging
setups but is also fast and computationally efficient, to cope with
the processing needs of large-scale angiograms.

In this work, we propose a novel deep learning method
for vascular segmentation of cerebral 2PM angiograms,
which overcomes the aforementioned limitations of the exist-
ing techniques and demonstrates state-of-the-art segmenta-
tion performance. Our contribution here is three-fold. First,
we present a novel application of a total variation (TV) regu-
larized loss function for 2PM vascular segmentation. The
proposed loss function combines the “supervised” informa-
tion from training data acquired on a single imaging setup,
with an “unsupervised” regularization term that penalizes
the total variation of the DNN output. This regularization
encourages piece-wise continuity in the final segmentation
and improves the generalization ability of the trained DNN
to different imaging setups, without the need of excessive
training data, transfer learning [20], or domain transfer
[21]. The TV-regularized loss also makes the DNN signifi-
cantly more robust to mislabeled ground-truth annotations.
This is particularly useful for large-scale 2PM vascular angio-
grams where significant noise in deep vasculature makes pre-
cise ground-truth annotation very challenging, even for
human annotators, making the ground-truth data prone to
mislabeling. The TV penalty also imparts inherent denoising
capability to the trained network, eliminating the need for
any postprocessing. Our second contribution is a novel pre-
processing method, which aids in the generalization by mak-
ing the histogram of an arbitrary test angiogram similar to
that of training data, in addition to reducing its noise. We
demonstrate the effectiveness of this preprocessing method
to improve segmentation quality, not only with our proposed
method but also with some existing 2PM vascular segmenta-
tion techniques. Our third contribution is the novel applica-
tion of an extremely lightweight, end-to-end 3D, DNN for
2PM vascular segmentation, which is able to demonstrate
an order of magnitude faster segmentation, compared to
the current state-of-the-art [9], in terms of voxels segmented
per second. This enables us to perform segmentation on sig-
nificantly larger regions in several mouse brains, thus
enabling large-scale in vivo neurovascular analysis. To illus-
trate this unique capability, we demonstrate segmentation
on an 808 × 808 × 702 μm volume in less than 2.5 seconds.

Following vascular segmentation from our DNN model,
we perform graph extraction on the binary segmentation
map using a recently developed method based on the
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Laplacian flow dynamics [22]. Importantly, we show that our
segmentation results in better graph modeling of the vascula-
ture across large volumes compared to other segmentation
techniques.

Overall, we present a new high-speed and computation-
ally efficient anatomical modeling framework for the brain
vasculature, which consists of deep learning-based vascular
segmentation followed by graphing. Our work paves the
way for future modeling and analysis of hemodynamic
response at much greater scales that were inaccessible before.
To facilitate further advancements in this field of research, we
have made our DNN architecture, dataset, and trained
models publicly available at https://github.com/bu-cisl/
2PM_Vascular_Segmentation_DNN.

2. Results

2.1. System Framework. The deep learning-based vasculature
anatomical modeling pipeline is shown in Figure 1(a). This
modular framework takes 2PM angiograms of live mouse
brain as the input, performs segmentation of blood vessels
using a novel 3D DNN, and finally extracts a vascular graph
from the network’s prediction. The DNN (Figure 1(b), S7),
detailed in Section 4.3, is of critical importance in this pipe-
line and is our primary contribution, along with the novel
application of a TV-regularized loss function for 2PM vascu-
lar segmentation, detailed in Section 4.4. This network is first
trained to minimize the discrepancy between manually
annotated ground-truth segmentation and its own prediction
(Figure 1(b)). During this training process, the network is
exposed to challenging regions in 2PM angiograms in order
to improve its vessel recovery from poor quality images.
Some examples of such regions include deep 2PM measure-

ments with low signal contrast (Figure 2(a)) and pial vessel
occlusions (Figure 2(a), red circle). In addition, we use large
input angiogram patches of size 128 × 128 × 128 voxels, in
conjunction with a network optimized for computation
speed, allowing us faster segmentation on significantly larger
angiograms compared to state-of-the-art methods [9, 10].
Once trained, this network provides segmentation of 2PM
angiograms in a feed-forward manner (Figure 1(c)) that out-
performs the state-of-the-art methods as detailed below.

2.2. Segmentation Performance Analysis. To evaluate our seg-
mentation approach, we first visually compare the predicted
vessel segmentation from our DNN with the ground truth,
a traditional Hessian matrix approach [3], and a recently
developed DNN model [8] in Figure 3. Our method outper-
forms both these techniques in terms of segmentation qual-
ity, especially for vessels deep beneath the cortical surface.
The Hessian matrix approach identifies tubular structures
by an enhancement function based on Hessian eigenvalues.
While it recovers most of the vessels closer to the surface, it
performs poorly in this regard for deeper vessels, due to sig-
nificantly higher measurement noise in the angiogram,
which makes it difficult to distinguish between the vessels
and the surrounding noisy background. Damseh et al. [8]
use a DenseNet architecture [18] to perform vascular seg-
mentation in a 2D slice-wise manner. Although their net-
work performs better than the Hessian approach, it also
suffers from bad segmentation for deeper vessels and ignores
3D context due to the slice-wise processing. A significant
advantage that the proposed method possesses, compared
to these techniques, is the TV-regularized loss function,
which penalizes the variation of the DNN output, thus
imparting inherent denoising capability to the network and

Measured angiogram 3D segmentation 3D graph

Weight
optimization

Training
angiograms

Ground truth
segmentations

Test 
angiogram

Predicted
segmentation

DNN
DNN

Training stage Segmentation stage

(trained)

Segmentation
network 

2PM
acquisition 

Graph
extraction 

(a)

(b) (c)

Figure 1: Framework for vascular modeling. (a) Two-photon microscopy (2PM) is used to acquire cerebral angiographic data on a live
specimen via in vivo imaging. This is followed by binary vascular segmentation of the 2PM angiogram. Finally, the 3D graph of the
vasculature is computed from the segmentation map. In this paper, we present the segmentation method in detail, which is able to process
large-scale 2PM angiograms. (b) A deep neural network (DNN) is used for segmentation which is first trained using annotated
angiograms. During this process, the network weights are iteratively adjusted for accurate vessel segmentation. (c) After the training is
complete, the optimized network can be used in a feed-forward manner for segmentation on unseen angiograms.
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improving its segmentation for deep vessels. In addition, the
proposed DNN also performs end-to-end 3D processing of
data, which takes into account the 3D context of the vascula-
ture. Thus, the segmentation from our method maintains a

greater overlap of the prediction and ground truth compared
to other methods, out to 606μm (Figures 3(b)–3(d)). These
results indicate a 3× depth improvement using our approach
over the current state-of-the-art methods. Since these large
imaging depths also exhibit poor signal-to-background ratios
(SBR) (Figure 2), our DNN model also provides visually
superior performance under low signal contrast imaging
conditions. As discussed below, we quantify these improve-
ments using a comprehensive set of metrics to holistically
evaluate the vascular segmentation performance.

Overlap-based metrics are the most widely used metrics
to evaluate vessel segmentation algorithms, which are com-
puted based on analyzing the voxel overlap between the
ground truth and the prediction. For example, sensitivity
and specificity represent the respective percentage of the
foreground and background voxels that are correctly recov-
ered in the prediction. The Jaccard index computes the inter-
section over the union of the prediction and the ground
truth, representing similarity based on percentage overlap.
The Dice index is very similar to the Jaccard index, and the
two are strongly positively correlated. Generally, such met-
rics only compare the physical overlap between the ground
truth and the predicted segmentation without considering
the underlying morphological shapes of the object [23]. This
factor makes overlap-based metrics ill-suited for delimiting
complex boundaries like blood vessels, since they will prefer-
entially correct larger vessels occupying more of the volume
while ignoring the smaller, yet important capillaries in the
vasculature. In addition, these metrics suffer from inherent
biases towards one segmentation class or the other. For
example, the Jaccard index, the Dice coefficient, and sensitiv-
ity are insensitive to true negative predictions, making them
primarily indicative of positive class performance. On the
other hand, specificity is insensitive to true positive predic-
tions, thus primarily indicative of negative class performance.
Accuracy is subject to class imbalance, i.e., when one type of
class labels are significantly more abundant than the rest,
accuracy becomes more indicative of the abundant class. This
problem is particularly prevalent in vascular segmentation
[24]. As an example, our manually segmented 2PM angio-
grams contain more than 96% background tissue voxels

566-606 𝜇m286-326 𝜇m6-46 𝜇m

160 𝜇m

G
ro

un
d 

tr
ut

h
O

ur
s

D
am

se
h 

et
. a

l. 
[8

]
Je

rm
an

 et
. a

l. 
[1

3]

2PM measurement

(a) (b) (c) (d)

Segmentation
Overlap

x x
z

y

y

Figure 3: Large-scale 2PM vascular segmentation. (a) 3D
renderings of segmentation on the test angiogram. (b)-(d)
Maximum intensity projections (MIPs) of binary segmentation
overlaid on 2PM measurement. Each MIP represents 40μm
physical depth and 20 discrete slices along the z-axis. MIPs for
three different depth ranges are presented to show the effect of
axial depth on segmentation performance. We demonstrate good
segmentation for vasculature up to 606μm, despite a significant
increase in background noise associated with 2PM.

Increasing depth

700 𝜇m400 𝜇m30 𝜇m

0Si
gn

al
 to

 b
ac

kg
ro

un
d 

ra
tio

 (d
B)

200
–40

–20

20

40

60

0

400 600 800
Imaging depth in 𝜇m

(a) (b)

Figure 2: Deterioration of two-photon microscopy signal with imaging depth. (a) Visual contrast decreases for deeper vasculature due to loss
of illumination focus with increased imaging depth, and higher background fluorescence due to increased laser power. Large pial vessels on
the surface cast shadows underneath, as shown by the encircled region, making vessel detection challenging. (b) The signal to background
ratio (SBR) of the angiogram decreases rapidly going deeper into the brain tissue.
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and less than 4% foreground vessel voxels, indicating an
imbalance ratio of more than 24.

To overcome these shortcomings, we further quantify
our DNN performance using the correlation-based Mat-
thew’s correlation coefficient (MCC) metric; two morpholog-
ical similarity-based metrics, namely, Hausdorff distance
(HD) and Modified Hausdorff distance (MHD); and a
graph-based metric length correlation (LC). MCC is particu-
larly suited for highly imbalanced data [25] since it is unbi-
ased towards any class and gives the same value between -1
and 1, even when negative and positive classes are swapped.
A score of 1 means perfect correlation, 0 means uncorrelated
and the classifier is akin to random guessing, and -1 means
perfect negative correlation. HD measures the extent of mor-
phological similarity between the prediction and ground
truth, i.e., how visually similar their shapes are. This metric
is suitable for data involving complex contours, e.g., blood
vessels [23]. MHD is a variant of HD and is more robust to
the outliers and noise. LC is a graph-based metric, which
we derive from the length metric in [26], and is specifically
suitable for vascular segmentation. It measures the degree
of coincidence between the predicted and the ground truth
segmentations in terms of the total length. Since accurate
graph extraction is the eventual goal for our segmentation
pipeline, LC is a particularly well-suited metric for
comparison.

The quantitative evaluation of our DNN segmentation on
(unseen) testing data is presented in Figures 4(a) and 4(b).
Our method demonstrates the best overall segmentation,
especially with respect to non-overlap-based metrics. In

addition to providing both qualitatively and quantitatively
improved vessel segmentation, our method also provides
≈10× faster voxel-per-second segmentation than the current
state-of-the-art [9] as shown in Figure 4(c). Faster computa-
tion speed played an important role in enabling our DNN to
train on our large-scale dataset within a reasonable time and
has potential applications for real-time segmentation.

2.3. Generalization to a New 2PM Imaging System. Existing
segmentation methods based on supervised learning [8, 10,
17] have not demonstrated the ability to generalize across
various 2PM imaging setups, and the same setup is used to
acquire both the training and testing data. In some cases,
even the same 3D angiogram is divided into both training
and testing sets [10]. Training a DNN with the ability to gen-
eralize over different setups is challenging due to intermicro-
scope variability. However, it is highly desirable to have a
segmentation method which is independent of the acquisi-
tion hardware. One possible solution is to train a supervised
DNN with annotated data from various imaging setups,
because having such diversity in the training set is known
to improve generalization performance. This however is dif-
ficult to achieve, since manually annotating ground truth for
many large-scale angiograms from various setups is imprac-
tical due to the prohibitive labor cost. This is also why very
few such large-scale annotated datasets are publicly available.
Limited data availability makes it difficult to effectively train a
purely supervised learning model. Supervised methods are
also susceptible to possible misannotations, e.g., due to
human error, and this problem is particularly amplified for
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Figure 4: Quantitative evaluation of segmentation performance. (a) While we do present traditional metrics for segmentation comparison,
e.g., sensitivity, specificity, Jaccard index, F1 score, and accuracy, we also include other metrics arguably better suited for vascular
segmentation including Matthew’s correlation coefficient (MCC), Hausdorff distance (HD), and length correlation (LC). Our method
provides the best overall performance on the test dataset, supporting the qualitative results in Figure 3. (b) Here, we compare the slice-
wise modified Hausdorff distance (MHD) between the methods of interest. Our method outperforms other techniques with a considerably
smaller mean and standard deviation of the slice-wise MHD. (c) In terms of the number of voxels segmented per second, our method is
about 10x faster than the state-of-the-art [9], making it suitable for large-scale and real-time applications.
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large-scale datasets [27]. Another possible approach for
achieving generalization is to train an unsupervised DNN,
as by Gur et. al [9]. However, unsupervised methods discard
annotated data altogether, and this may be detrimental in
challenging regions of low contrast like deep vasculature
and areas under large pial vessels, where ground-truth anno-
tations might be able to guide the training process. Here, we
present a DNN with a TV-regularized loss function, which
combines the benefits of supervised learning with an unsu-
pervised regularization term that penalizes the total variation
of the DNN output, to demonstrate state-of-the-art general-
ization performance. Such a regularized learning scheme is
not as susceptible to misannotations as supervised methods
and is demonstrated empirically in Figure S1. In addition,
unlike unsupervised methods, our network is able to
incorporate expert annotated data for training, which is
especially beneficial for low contrast and high noise regions
in deep vasculature. After being trained on data from only
one imaging setup, we demonstrate that our network is able
to demonstrate good segmentation on data from another
2PM microscope without any retraining or network fine
tuning (Figure 5).

2.4. Graph-Based Modeling of Cerebral Vasculature. Vascular
segmentation enables many important applications. Here, we

are interested in graph-based modeling for brain vasculature
[4, 5, 28, 29]. In this work, we propose a pipeline for graph
extraction (Figure 1(a)), where we first compute the 3D seg-
mentation using the method presented in this paper,
followed by graph extraction using the framework recently
proposed by Damseh et. al [22]. For each of the segmentation
maps in Figure 3, including the ground truth segmentation,
we compute the vascular graphs and present the comparative
result in Figure 6. The qualitative results in Figure 6(a) dem-
onstrate the graph computed from our segmentation to be
more similar to the graph from the ground truth, especially
for deeper vessels. This is in-line with our observation in
Figure 3, where our method demonstrates comparatively bet-
ter segmentation, particularly for deeper vessels. We also
compute four basic metrics for quantitatively comparing
the extracted graphs. First is the total number of vascular seg-
ments in the graph network. Second is the number of dan-
gling segments, i.e., segments disconnected at one end or
both ends. Generally, there should not be any dangling seg-
ments except at the borders of the graph. Third is the number
of short vascular segments, which we consider to be less than
6μm. Finally, the number of incorrect bifurcations in the
graph network. At bifurcation junctions, a vessel divides into
two subvessels and generally does not divide into more than
two subvessels. If the extracted graph contains junctions
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Figure 5: Generalization capability of our segmentation method. Our DNN is optimized for robustness to intermicroscope variability. We
train our DNN on data from one 2PM setup and test on an angiogram acquired on a different setup, demonstrating good segmentation
quality. (a) 3D renderings of the segmentation maps. (b)-(d) Maximum intensity projections (MIPs) of vascular segmentation overlaid on
2PM measurement, shown for lateral x-y cross-sections. Each MIP represents 20 discrete slices along the z-axis. Our method has good
qualitative performance with well-connected vasculature and apt segmentation for both large and small vessels, demonstrating its ability
to generalize to other 2PM imaging setups without retraining. For comparison, the supervised learning method by Damseh et al. [8] is
unable to generalize well, and the resulting segmentation is not well connected. (e) MIPs for longitudinal x-z cross-sections, each
representing 20 discrete slices along the y-axis. Our method computes comparatively better segmentation in the challenging region below
the large pial-vessel where image contrast is low due to occlusion.
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where a vessel divides into three or more subvessels, we con-
sider it to be an incorrect bifurcation. We compare these met-
rics among the extracted graphs in Figure 6(b) and find that
the performance of our method resembles most closely to the
ground truth. We also compute the graphs using the segmen-
tation maps from Figure 5 and present the qualitative com-
parison in Figure S2, empirically demonstrating satisfactory
graph extraction performance up to a depth of 600μm. We
thus demonstrate that our segmentation method is suitable
for large-scale vascular modeling and subsequent graph
extraction.

3. Discussion

We propose and experimentally demonstrate a novel method
for the segmentation of 2PM angiograms, with the goal of
large-scale cerebrovascular modeling. This new strategy
enables the processing of much larger angiograms compared
to the existing methods with significantly faster computation
speed, by leveraging recent advances in deep learning. In
addition, our deep neural network is able to segment angio-
grams from multiple 2PM imaging systems without retrain-
ing, and this flexibility shows its potential to be used as a
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Figure 6: Graph extraction from 3D segmentation. The mathematical graph of the vasculature, comprising of nodes connected via edges, was
computed from the segmentations in Figure 3. (a) Qualitative comparison of graph extraction performance. (I) 3D view of the graphs depicted
as vascular center lines in the volume. (II-IV) MIPs of graphs overlaid on 2PM measurement, each MIP representing 20 discreet slices along
the z-axis. Graph extraction from our segmentation is qualitatively better compared to other methods, especially at increased depth. (b) A
comparison of metrics demonstrates that the graph computed from our segmentation is quantitatively most similar to the graph from the
ground truth segmentation.
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general 3D segmentation tool for large-scale angiograms
obtained using any 2PM imaging setup. In light of our goal
of graph-based modeling of the cerebral vasculature, we com-
pute vascular graphs from binary segmentation, using a tech-
nique recently developed by one of our co-authors [22]. We
observe that improved segmentation using our method led
to better vascular graphs for large 2PM angiograms. This
has important implications since existing graph extraction
pipelines do not demonstrate adequate accuracy and have
to be followed up by significant manual correction as a post-
processing step [29]. This human annotation can quickly
become infeasible as the angiograms scale to greater sizes
and quantities. It is therefore desirable to have a method for
accurate graph computation which can minimize, if not
completely eliminate, the use of manual correction. Towards
this end, we have presented a modular approach for graph
computation, where the challenging 2PM vascular segmenta-
tion has been decoupled from graph extraction. This gives us
the ability to optimize each of these two steps independently.

While our method was able to demonstrate significantly
deeper segmentation compared to existing techniques, it still
has several limitations. Our method was unable to accurately
segment vasculature beyond 600μm within the brain tissue.
This is partly due to the limitation of 2PM to capture angio-
grams with sufficient SBRs much beyond this depth and also
due to the unavailability of accurate ground truth for deeper
angiograms. Effective segmentation for deeper vasculature
might be achieved by employing ground-truth data with
greater depth, coupled with more intelligent semisupervised
learning, involving, e.g., active contours [30], in addition to
the TV regularization used in our work. Another limitation
is that angiograms from different setups have to undergo
manual histogram equalization before being segmented by
our network. This involves linear scaling to make the voxel
distribution of new angiograms similar to those on which
the network has been trained. Further work may look to
automate the process. In general, more advanced domain
adaptation techniques [31, 32] may be incorporated to fur-
ther improve the generalizability. Although we demonstrate
improved segmentation performance in the low-contrast
region under large pial vessels compared to existing methods,
the segmentation still suffers from artifacts and obvious false
negatives. Further work may look to improve the perfor-
mance in such regions, on the acquisition end either by
employing better fluorophores or by using a preprocessing
method to enhance the contrast of the vasculature under pial
vessels, prior to segmentation. Despite these limitations, we
demonstrate state-of-the-art performance for vascular seg-
mentation of large-scale 2PM angiograms. We believe that
this work paves the way towards large-scale cerebrovascular
modeling and analysis.

4. Materials and Method

4.1. Data Preparation. 2PM angiograms were acquired on
two different imaging systems for various mice specimen
(n = 5 for system 1 and n = 1 for system 2). For training
and quantitative evaluation, we used data only from the first
imaging setup, while data from the second setup was used for

qualitative demonstration of the generalizability of our
approach.

The dataset from imaging system 1 has been previously
published by Gagnon et al. [5, 29], and its preparation is
detailed as follows. All experimental procedures were
approved by the Massachusetts General Hospital Subcom-
mittee on Research Animal Care. C57BL/6 mice (male, 25-
30 g, n = 5) were anesthetized by isoflurane (1-2% in a mix-
ture of O2 and air) under constant temperature (37°C). A cra-
nial window with the dura removed was sealed with a 150m
thick microscope cover-slip. During the experiments, a cath-
eter was used in the femoral artery to monitor the systemic
blood pressure and blood gases and to administer the two-
photon dyes. During the measurement period, mice breathed
a mixture of O2 and air under the 0.7-1.2% isoflurane anes-
thesia. The structural imaging of the cortical vasculature
was performed using a custom-built two-photon microscope
[33] after labeling the blood plasma with dextranconjugated
fluorescein (FITC) at 500nM concentration. Image stacks
of the vasculature were acquired with 1:2 × 1:2 × 2:0 μm
voxel sizes under a 20x Olympus objective (NA = 0:95). Data
was digitized with a 16-bit depth. A total of five angiograms
were acquired on this setup, each from a distinct specimen
Figure S3(A-E), and were divided into training and testing
angiograms in a ratio of 80-20%, respectively, i.e., four
angiograms were used for training (Figure S3(B-E)), while
one was used for testing and evaluation (Figure S3(B-E)).
The ground-truth segmentation was prepared by human
annotators using custom software.

For imaging system 2, the dataset has a similar prepara-
tion process for the live specimen; however, it was acquired
on a different imaging system and a different mouse whose
details are as follows. All experimental procedures were
approved by the BU IACUC. We anesthetized a C57BL/6J
mouse with isoflurane (1–2% in a mixture of O2 and air)
under constant temperature (37°C). A cranial window with
the dura intact was sealed with a 150m thick microscope
cover-slip. During the measurement period, the mice
breathed a mixture of O2 and air under 0.7–1.2% isoflurane
anesthesia. The blood plasma was labeled using dextrancon-
jugated fluorescein (FITC) at 500nM concentration. Imaging
was performed using a Bruker two-photon microscope using
a 16x objective (NA = 0:8) with voxel size 1:58 × 1:58 × 2:0 μ
m. Data was digitized with a 12-bit depth. One angiogram
was acquired on this setup (Figure S3(F)) and was used to
test the generalization capability of our network.

4.2. Data Preprocessing. Adequate preprocessing on test data
was found to be critical for good network generalization.
Here, we present a two-step preprocessing method that con-
sists of histogram scaling, followed by noise removal, for
improved segmentation.

Since our two imaging setups have different detector bit-
depths, their respective angiograms also differed with respect
to the scale of voxel intensities (Figure S4(A, C)). Since our
DNN learns a maximum likelihood function for mapping
the input angiograms to the desired 3D segmentation maps,
given the training data, it is important that the test
angiogram from any imaging system is on a similar
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intensity scale as the training data. Noticing that the
histograms from both setups are similar in shape
(Figure S4(A, C)), but different with respect to intensity
scale, we perform linear scaling on data from setup 2 by
multiplying it with a nonnegative scaling factor. The scaling
factor is chosen such that after scaling, the intensity
histogram of the angiogram from setup 2 becomes similar
in scale to the intensity histogram of the angiogram from
setup 1. This procedure has been depicted in Figure S4(B,
D). The scaling factor for our case was empirically chosen
to be 16. In the case of applying this approach to an
angiogram from a different imaging setup, the procedure
will be very similar. This new angiogram would have to be
multiplied with a nonnegative scaling factor, which is
empirically chosen such that the voxel-intensity histogram
of the scaled angiogram becomes similar in scale to that of
an angiogram from setup 1.

A well-known challenge inherent to 2PM is the degrada-
tion of signal with imaging depth (Figure 2, Figure S5(A)).
Segmentation on such an angiogram using our trained
DNN has significant artifacts, even after linear scaling.
Here, we propose a simple yet effective method to reduce
this depth-dependent noise. We subtracted from each 2D
image in a 2PM 3D stack its median value. This visibly
improved the signal quality by suppressing the background
noise, especially in deeper layers (Figure S5(B)). The
angiogram was further improved by applying a 3D median
filter with a kernel of size 3 voxels (Figure S5(C)). This
preprocessing method improved the segmentation of the
deep vasculature and made individual vessels more
distinguishable (Figure S6). However, this method was
observed to decrease segmentation quality in the shadowed
region under large pial vessels where the measurement
contrast is comparatively weak. A locally adaptive
preprocessing method that could overcome this limitation
may be a potential direction of future work.

4.3. Deep Neural Network Design and Implementation. Our
DNN architecture is based on the well-known V-net [34];
however, we significantly modified the original framework
for large-scale 2PM vascular segmentation (Figure S7). The
network is end-to-end 3D for fast computation, as opposed
to 2D slice-wise techniques, and consequently also takes
into account the 3D context for improved segmentation. It
has an encoder-decoder framework for learning vascular
features at various size scales and high-resolution feature
forwarding to retain high-frequency information. We
incorporate batch normalization after each convolution
layer to improve generalization performance and
convergence speed. Our network processes 3D input
patches with outputs of the same size. Patch-based
processing enables the segmentation of arbitrarily large
volumes. Our large patch size compared to the existing
methods, coupled with a lightweight network, helps to
significantly accelerate the computation speed. For the
training process, the training data is divided into patches of
128 × 128 × 128 voxels, with an overlap of 64 voxels along
all axes. Each training iteration processes a batch of 4
patches chosen randomly from the training data. We use

Adam optimizer to train our network with a learning rate
of 10-4 for about 100 epochs, which takes approximately 4
hours on a TitanXp GPU. For testing, the angiogram is
divided into patches of 128 × 128 × 128 voxels, and
segmentation is performed on each patch separately, after
which they are stitched together to get the final segmented
angiogram. The division of the acquired data into training
and testing datasets is described in Section 4.1.

4.4. Loss Function Design. During the training process of a
DNN, a loss function is optimized via gradient descent or
any of its variants. The loss itself is a function of the network
output and is chosen by the user to impart desired character-
istics to the DNN output by guiding the training process. In
this problem, we initially experimented with binary cross-
entropy (BCE) loss, as it is known to promote sparsity in
the output [35], which is desirable for vascular segmentation.
However, severe class imbalance in our data rendered BCE
ineffective as a loss function, and the DNN converged to a
nearly zero solution, i.e., almost all voxels were classified as
background. Class imbalance is the situation when one class
significantly outnumbers the others in the training data,
causing a preferential treatment by the learning algorithm
towards the abundant class. In our case, the negative class
consisting of background voxels was significantly more
abundant than the positive class and constituted 96% of the
total voxels in the training data. This resulted in a significant
number of false negatives in the DNN predictions using BCE.
In order to overcome this challenge, we incorporated a vari-
ant of BCE loss with a class balancing [36], E, defined as

E Wð Þ = −β〠
iϵY+

log P yi = 1 ∣ X ;Wð Þ

− 1 − βð Þ〠
iϵY−

log P yi = 0 ∣ X ;Wð Þ,
ð1Þ

where P is the probability of obtaining the label yi for the i
th

voxel, given data X and network weightsW. β and ð1 − βÞ are
the class weighting multipliers, defined as β = jY−j/jY j, ð1 −
βÞ = jY+j/jY j, where Y+ is the set of positive (vessel) labels,
Y− is the set of negative (background tissue) labels, and Y
being the set of all voxels, both vessel and background. In this
loss, we essentially weigh down the negative class and give a
greater weight to the positive class, and the assigned weight
depends on the fractions of the vessel and background voxels
in the volume, respectively. Note that β is not a tunable
hyperparameter here, rather its value is determined by the
training data in every iteration. This balanced BCE loss sig-
nificantly improved the training in the presence of severe
class imbalance.

Merely using the balanced BCE loss described above was
found to be insufficient to provide satisfactory generalization
performance. One way to improve the generalizability is to
use training data from various different imaging setups.
However, manually annotating many large-scale angiograms
for this purpose would have been prohibitive due to the asso-
ciated time and cost. We therefore took a different approach
and employed TV regularization in the loss function, which
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improved the generalization in the presence of limited and
noisy training data. For this purpose, we added a regulariza-
tion term to the loss function, which penalizes the total vari-
ation of the network output. Such a loss based on 2D-TV has
been demonstrated by Javanmardi et al. in their preprint
[37]. We employ a 3D-TV loss, TV , which is defined as

TV Wð Þ =〠
iϵY

∇XP yi ;Wð Þj j + ∇YP yi ;Wð Þj j + ∇ZP yi ;Wð Þj j,

ð2Þ

where ∇X , ∇Y , and ∇Z are 3D Sobel operators for computing
TV [38]. TV when added to the balanced BCE loss decreases
the model dependence on the ground truth data, helping gen-
eralization. TV is known to promote sparsity and piece-wise
continuity in solutions, which are suitable priors to vascular
segmentation. The addition of TV imparted denoising prop-
erty to the network, such that no postprocessing was required
on the outputs after segmentation, and improved the gener-
alization performance (Figure Figure S8).

Finally, we also regularize our loss function by adding a
penalty on the l2-norm of the network weights W. This is
called weight decay and is known to encourage the network
to learn smooth mappings from the input angiogram to the
output segmentations, reducing overfitting and improving
generalization. The final form of our loss function L is thus

L Wð Þ = E Wð Þ + αTV Wð Þ + γ Wk kl2 , ð3Þ

where α and γ are tunable parameters, whose values were
empirically found to be 5 × 10−9 and 0.01, respectively, for
best performance. We present how different levels of TV reg-
ularization impact the segmentation performance in
Figure S9 and demonstrate the range for the optimal value
of α. Similarly, we also show segmentation performance as
a function of γ and present the optimal range for weight
decay in Figure S10.

4.5. Segmentation Evaluation Metrics. Accuracy = TP + TN/
ðTP + TN + FP + FNÞ, Jaccard index = TP/ðTP + FP + FNÞ,
Dice coefficient = 2TP/ð2TP + FP + FNÞ, Specificity = TN/ð
FP + TNÞ, and Sensitivity = TP/ðTP + FNÞ. Here, TP (True
Positive) is the number of correctly classified vessel voxels, TN
(True Negative) is the number of correctly classified back-
ground voxels, FP (False Positive) is the number of background
voxels incorrectly labeled as vessels, and FN (False Negative) is
the number of vessel voxels incorrectly labeled as background.

MCC = TP × TN − FP × FN/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp

,
which measures the linear correlation between the ground
truth and predicted labels and is a special case of the Pearson
correlation coefficient.

HD among two finite point sets can be defined as
HDðA, BÞ =max ðhðA, BÞ, hðB, AÞÞ, where hðA, BÞ =max

aϵA
min
bϵB

ka − bk, k:k being any norm, e.g., Euclidean norm.

LC is defined as LCðS, SGÞ = #ððgðSÞ ∩ SGÞ ∪ ðS ∩ gðSGÞÞ
Þ/#ðgðSÞ ∪ gðSGÞÞ, where S and SG are the predicted and
ground truth segmentation, respectively; gð:Þ is an operator
that computes the 3D vascular skeleton from an input seg-

mentation in the form of a graph of nodes and edges, using
the method in [22]; and #ð:Þ measures the cardinality of an
input set in terms of the number of voxels.
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