<  Back to the Polytechnique Montréal portal

Matrices cellulaires reconfigurables en point flottant dédiées au traitement des signaux

Nabil El Ghali

Masters thesis (2011)

[img]
Preview
Download (7MB)
Cite this document: El Ghali, N. (2011). Matrices cellulaires reconfigurables en point flottant dédiées au traitement des signaux (Masters thesis, École Polytechnique de Montréal). Retrieved from https://publications.polymtl.ca/650/
Show abstract Hide abstract

Abstract

RÉSUMÉ Les processeurs scalaires sont majoritairement utilisés de nos jours, pour le traitement des signaux numériques, par comparaison aux processeurs matriciels qui offrent pourtant plus de vitesse de calcul due à leur architecture parallèle traitant de nombreuses données en temps réel. Il existe une multitude d’architectures de matrices cellulaires. Cependant la grande majorité est très spécialisée pour le calcul d’une ou deux fonctions de traitement de signaux et seuls quelques processeurs matriciels sont reconfigurables afin de traiter la plupart des fonctions de traitement de signaux. Ce mémoire présente l’architecture d’un processeur matriciel construit à partir de cellules complexes de calcul appelé "Module de Traitement Universel" (UPM). Ce processeur peut servir comme un module de propriété intellectuelle (IP block) destiné à être utilisé dans un FPGA pour le traitement des signaux. Des mêmes matrices d’UPMs sont reconfigurées en vue d’effectuer la plupart des opérations de Traitement Numérique des Signaux DSP incluant des fonctions de filtrage adaptatif récursives ou non et des fonctions d’analyse spectrale. Ce processeur peut être reconfiguré pour appliquer diverses transformées, filtres adaptatifs, filtres en treillis, en générations de fonctions, corrélations et en calcul de fonctions récursives qui peuvent être exécutées à grande vitesse. Pour une plus grande précision la conception est faite de manière à traiter les données en arithmétique point flottant. Afin de permettre le calcul de fonctions récursives l’unité de traitement UPM est construite avec un module de contrôle de récursivité. En outre l’UPM est conçu de manière à être mis en cascade afin d’augmenter l’ordre des opérations de traitement. La conception logicielle de matrice 2x2 UPMs et 6x4 UPMs, qui sont programmées en langage Verilog-HDL, est simulée et testée avec les mêmes cellules reconfigurées en plusieurs fonctions telles que le filtrage adaptatif, l’analyse spectrale et le calcul de fonctions récursives. La même matrice de cellules à été simulée sur Matlab Simulink sous différentes configurations.----------ABSTRACT Scalar processors are commonly used today in contrast with array processors which offer a higher computation speed due to their parallel architecture dealing with a great number of data in real time. Several cellular arrays architectures exist. However, the vast majority is highly specialized for the computation of one or two signal processing functions and only a few are reconfigurable to handle most of the of signal processing functions. This thesis presents the architecture of an array processor constructed using building blocks which are complex computation cells named Universal Processing Module (UPM). This array processor may serve as an intellectual property (IP block) to be used in FPGA technology and dedicated to signal processing. The same UPMs matrices are reconfigured to perform most of digital signal processing DSP operations including adaptive recursive and non recursive filtering, and spectral analysis functions. This processor can be reconfigured in order to compute transforms, adaptive filters, lattice filters, function generations, correlations and recursive functions, all performed at high speed. For greater accuracy the processor is constructed in floating point arithmetic. In order to enable computation of recursive functions, the UPM is built with a recursion control module. This processing element can also be indefinitely with the intention to increase filtering order. The software design of a 2x2 UPMs and a 6x4 UPMs arrays which is programmed in Verilog-HDL language, is simulated and tested using same cells reconfigured in order to compute DSP algorithms such as adaptive filtering, spectral analysis and recursive functions. The same matrix of cell is simulated on Matlab Simulink through different configuration. The processor is tested with all proposed reconfigurations and offers an acceptable computing precision.

Open Access document in PolyPublie
Department: Département de génie électrique
Dissertation/thesis director: Michael Corinthios
Date Deposited: 17 Nov 2011 15:20
Last Modified: 27 Jun 2019 16:49
PolyPublie URL: https://publications.polymtl.ca/650/

Statistics

Total downloads

Downloads per month in the last year

Origin of downloads

Repository Staff Only