<  Retour au portail Polytechnique Montréal

Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection

Eslam G. Al-Sakkari, Ahmed Ragab, Mostafa Amer, Olumoye Ajao, Marzouk Benali, Daria Camilla Boffito, Hanane Dagdougui et Mouloud Amazouz

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (11MB)
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Matériel supplémentaire
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

Several processes and strategies have been developed to promote the utilization of lignin and to facilitate its market adoption across a broad spectrum of applications within the expanding lignin bioeconomy. However, the inherent variability in lignin properties, resulting from diverse feedstock sources and varied recovery and downstream processing methods, remains a significant challenge. This highlights the critical need to investigate lignin's miscibility and reactivity with polymers and solvents, as most lignin valorization pathways involve mixing, blending, or solubilization. Accurate estimation of Hansen solubility parameters (HSP) is crucial for solvent selection in several fields such as polymer science, coatings, adhesives, lignin-based biorefineries and solvent-based carbon capture. Traditional methods for predicting HSP are time-consuming and involve complex experiments, especially in applications dealing with carbon dioxide and lignin solubility. This paper introduces a novel ensemble modeling methodology based on machine learning (ML) techniques for accurate HSP prediction using Simplified Molecular Input Line Entry System (SMILES) codes as entries. The methodology integrates different ML approaches, including deep and shallow learning, to enhance prediction accuracy. Decision fusion of individual ML models is achieved through a hybrid approach combining non-learnable and learnable methods, resulting in reduced errors and enhanced accuracy. The results highlight the effectiveness of the ensemble-based methodology, which achieved 99% accuracy in predicting dispersion solubility parameters, outperforming other individual ML techniques. The proposed generic methodology, from data preprocessing to decision fusion through diverse ML algorithms, can be applied to various chemical analytics beyond HSP prediction.

Mots clés

Département: Département de génie chimique
Département de génie électrique
Département de mathématiques et de génie industriel
Organismes subventionnaires: Natural Resources Canada - Office of Energy Research and Development, Natural Resources Canada - Forest Innovation Program, NSERC / CRSNG
URL de PolyPublie: https://publications.polymtl.ca/61946/
Titre de la revue: Digital Chemical Engineering (vol. 14)
Maison d'édition: Elsevier
DOI: 10.1016/j.dche.2024.100207
URL officielle: https://doi.org/10.1016/j.dche.2024.100207
Date du dépôt: 16 janv. 2025 14:22
Dernière modification: 05 déc. 2025 01:12
Citer en APA 7: Al-Sakkari, E. G., Ragab, A., Amer, M., Ajao, O., Benali, M., Boffito, D. C., Dagdougui, H., & Amazouz, M. (2025). Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection. Digital Chemical Engineering, 14, 100207 (26 pages). https://doi.org/10.1016/j.dche.2024.100207

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document