<  Retour au portail Polytechnique Montréal

Deep learning in ultrasound localization microscopy : applications and perspectives

Brice Rauby, Paul Xing, Maxime Gasse et Jean Provost

Article de revue (2024)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Télécharger (105MB)
Afficher le résumé
Cacher le résumé

Abstract

Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.

Mots clés

deep learning; neural network; super-resolution; ultrasound localization microscopy

Sujet(s): 3100 Physique > 3100 Physique
Département: Département de génie physique
Organismes subventionnaires: NSERC / CRSNG, Institut TransMedTech, Canada Foundation for Innovation, Institut de Valorisation des Données, New Frontiers in Research Fund, Canadian Institutes of Health Research, Fonds de recherche du Québec - Nature et technologies, Réseau de Bio-Imagerie du Québec
Numéro de subvention: RGPIN-2019-04982, 38095, NFRFE-2018-01312, 452530
URL de PolyPublie: https://publications.polymtl.ca/59289/
Titre de la revue: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Maison d'édition: IEEE
DOI: 10.1109/tuffc.2024.3462299
URL officielle: https://doi.org/10.1109/tuffc.2024.3462299
Date du dépôt: 25 sept. 2024 09:39
Dernière modification: 26 sept. 2024 20:50
Citer en APA 7: Rauby, B., Xing, P., Gasse, M., & Provost, J. (2024). Deep learning in ultrasound localization microscopy : applications and perspectives. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 3462299 (23 pages). https://doi.org/10.1109/tuffc.2024.3462299

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document