
Titre:
Title:

Deep learning in ultrasound localization microscopy : applications 
and perspectives

Auteurs:
Authors:

Brice Rauby, Paul Xing, Maxime Gasse, & Jean Provost 

Date: 2024

Type: Article de revue / Article

Référence:
Citation:

Rauby, B., Xing, P., Gasse, M., & Provost, J. (2024). Deep learning in ultrasound 
localization microscopy : applications and perspectives. IEEE Transactions on 
Ultrasonics, Ferroelectrics and Frequency Control, 3462299 (23 pages). 
https://doi.org/10.1109/tuffc.2024.3462299

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/59289/

Version: Version finale avant publication / Accepted version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

Tous droits réservés / All rights reserved 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 

Maison d’édition:
Publisher:

IEEE

URL officiel:
Official URL:

https://doi.org/10.1109/tuffc.2024.3462299

Mention légale:
Legal notice:

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1109/tuffc.2024.3462299
https://publications.polymtl.ca/59289/
https://doi.org/10.1109/tuffc.2024.3462299


IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. XX, NO. XX, XXXX 2017 1

Deep Learning in Ultrasound Localization
Microscopy: Applications and Perspectives

Brice Rauby, student member, IEEE , Paul Xing, student member, IEEE , Maxime Gasse, and Jean Provost
Member, IEEE
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Abstract— Ultrasound Localization Microscopy (ULM) is
a novel super-resolution imaging technique that can im-
age the vasculature in vivo at depth with resolution far
beyond the conventional limit of diffraction. By relying
on the localization and tracking of clinically approved mi-
crobubbles injected in the blood stream, ULM can provide
not only anatomical visualization but also hemodynamic
quantification of the microvasculature of different tissues.
Various deep-learning approaches have been proposed
to address challenges in ULM including denoising, im-
proving microbubble localization, estimating blood flow
velocity or performing aberration correction. Proposed
deep learning methods often outperform their conven-
tional counterparts by improving image quality and reduc-
ing processing time. In addition, their robustness to high
concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance
to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning
applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide
an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep
learning model. We also take a deeper look into the numerous approaches that have been proposed to improve
the localization of microbubbles since they differ highly in their formulation of the optimization problem, their
evaluation, or their network architectures. We finally discuss the current limitations and challenges of these
methods, as well as the promises and potential of deep learning for ULM in the future.

Index Terms— Deep Learning, Neural Network, Super-resolution, Ultrasound Localization Microscopy

I. INTRODUCTION

INspired from development of super resolution imaging
techniques in optical microscopy [1, 2], Ultrasound Lo-
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Polytechnique Montréal, Montréal, QC H3T 1J4, Canada, and Mila-
Quebec artificial intelligence institute, Montréal, QC H2S 3H1, Canada
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calization Microscopy (ULM) leverages the detection and
localization of individual microbubbles injected into the blood-
stream to overcome the diffraction limit in ultrasound imag-
ing [3, 4]. ULM can reconstruct portions of the vascular tree at
depth, in vivo, and with a resolution on the order of a tenth of
the imaging wavelength, thus partially alleviating the trade-
off between penetration depth and resolution [5]. ULM has
also been extended to 3D imaging either using fully addressed
matrix arrays [6, 7, 8], multiplexed matrix arrays [9] or row-
column arrays [10, 11, 12]. ULM proof-of-concepts in patho-
logical animal models have shown, e.g., the characterization
of vascular function impairments in AD mice models [13] and
between early phases of ischemic and hemorrhagic strokes in
mice models [14]. Novel sequences also enable the extraction
of dynamic quantities in ULM such as pulsatility imaging
in the brain [15, 16], cardiac imaging [17, 18] or functional
imaging [19, 20] by using high microbubble detection rates
and retrospective gating. Singular microbubble behaviors have
also been leveraged to highlight specific structures, such as
glomeruli [21, 22]. Applications in humans have also been pro-
posed for aneurysm imaging in the brain [23], breast [24, 25]
or pancreas cancer imaging [26], lymph node metastatic cancer
[27], kidney [21, 26, 28], prostate [29], lower limb muscle
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Highlights

• Existing deep learning approaches in ULM vary in the constitution of their dataset and in the problem they address. We review
these approaches and compare their dataset constitution.

• Several approaches have focused on improving microbubble localization. We compare these studies in their evaluation, their
formulation of the optimization problem and their network architecture.

• This review compares existing deep learning approaches in ULM and provides insights on future research directions.

[30], liver imaging [26], vasa vasorum of the carotid wall [31],
and testicular microcirculation [32].

However, ULM also faces several inherent challenges. First,
imaging the entire vascular tree with current methods requires
impractically long acquisition times, since tens of minutes
would be needed to have a single microbubble flow in each
capillary at typical concentrations [33]. Second, ULM is de-
graded by skull aberration in brain imaging, clutter and cardiac
motion in cardiac imaging, and tissue motion in general [34].
Finally, clinical translation of ULM can be challenging due to
the large amount of data to acquire and process, often in the
range of hundreds of gigabytes, and the processing time that
can take several hours for a single acquisition [34].

Deep learning algorithms excel at signal processing tasks,
driven by the increasing availability of computational power
and large-scale datasets [35]. Since AlexNet [36] reduced
the top-5 error rate on the ImageNet Large Scale Visual
Recognition Challenge from 26.1% to 15.3% in 2012 [37],
subsequent deep learning models have further decreased this
error to only 3.6% within three years [38], increasing the pop-
ularity of deep learning for computer vision. Larger datasets
and advances in model architectures and training procedures
have since enabled deep learning methods to address more
challenging tasks such as object detection[39], multi-instance
segmentation [40] or image generation [41, 42]. Advances in
one specific domain often translate into other domains as well,
with several key components often reusable across different
tasks, like optimization algorithms [43, 44], normalization
layers [45, 46], activation functions [47, 48] or backbone
building blocks [49, 50]. For example, transformers originally
developed for Natural Language Processing (NLP) [50] have
later been applied to image processing tasks with great suc-
cess [51]. Foundation models, which are also originating from
the field of NLP, [52], are very large deep learning models that
are pre-trained on vast amounts of data, which can be re-used
either as-is or with little fine-tuning to address new tasks in
related or even different domains. Such foundation models are
now widespread in computer vision [53], and can be applied
to segment new images even from unrelated distributions [54].
In medical image analysis, foundation models trained on a
sufficiently large dataset combining different modalities can
segment regions of interest with better generalization and
accuracy than specialized, domain-specific models [55]. The
current performance of deep learning models makes them
attractive for processing and analyzing medical images, and
the application of future methods from other domains further
enhances their potential.

In recent years, several works have investigated deep learn-

ing methods as a way to improve ultrasound imaging, with no-
table successes in beamforming [56, 57, 58, 59, 60], and clutter
suppression in Contrast-Enhanced Ultrasound (CEUS) [61].
For recent reviews of deep learning methods in a general
ultrasound settings, see [62, 63]. In ULM, deep learning meth-
ods have served several purposes such as reducing processing
[64, 65, 66] or acquisition times [64, 65, 67], enhancing
image quality [20, 64, 66, 68], improving blood velocity
estimation [20, 69], and increasing robustness to challenging
experimental settings such as increased microbubble concen-
trations [20, 67, 70] or phase aberrations [71]. In this review,
we focus on deep learning methods specific to ULM, which
leverage the presence and the sparsity of microbubble echoes
in the ultrasound signal. Our objective is to cover and put into
perspective three essential aspects of deep learning algorithms
in ULM: dataset constitution, the range of targeted tasks, and,
using the example of microbubble localization, the variations
in formalism for a single task.

Deep learning methods can be integrated at various stages of
the ULM processing pipeline. To provide an overview of such
deep learning applications, we consider the following pipeline
for ULM (also depicted in Fig 2):

• Channel data sampling,
• Beamforming,
• Tissue clutter filtering,
• Microbubble detection,
• Localization,
• Tracking,
• Accumulation of trajectory statistics to form vascular

maps
Additional steps such as aberration correction, motion cor-
rection, additional filtering, denoising, or post-processing of
the trajectories are also discussed in this review when deep
learning approaches specific to ULM have been proposed.

In section II, we discuss the different existing approaches
related to generating labelled datasets used either in training
or evaluation of deep learning-based ULM methods. In sec-
tion III, we review the different application stages of deep
learning in the ULM pipeline. In section IV, we focus on
the localization stage of the ULM pipeline, where most deep
learning approaches have been applied. Finally, in section V,
we summarize this review with an overview of the successes,
limitations, and open challenges for deep learning-based ULM
methods.

II. GENERATION OF LABELLED DATASETS

Dataset constitution is a critical step that impacts both
model parameter optimization and performance evaluation.
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Existing acoustic field simulators enable the creation of re-
alistic ultrasound echoes from microbubble positions, thereby
facilitating the creation of in silico datasets, which partially
mitigate the limited availability and the lack of ground truth
of in vivo datasets. Literature on domain adaptation suggests
that more realistic simulations, leading to reduced domain
shift, may facilitate in vivo applications [72]. Driven by
these theoretical insights, the ULM community has strived
to produce highly realistic simulations allowing for in vivo
applications of models trained in silico. Simulations can also
be used for the evaluation of ULM methods, as done in recent
benchmarking efforts such as the Ultra-SR challenge [73],
and PALA [74], described hereafter. Compared to other com-
puter vision domains, where dataset collection require costly
manual annotations and often results in the creation of large-
scale publicly available datasets [37, 75, 76], ULM training
datasets tend to be smaller in scale and designed to match
the imaging parameters of one or a few studies. Diversity
in simulation models and their underlying hypotheses leads
to discrepancies between datasets used in different studies,
making model comparisons challenging. Larger-scale ULM
datasets that target more diverse applications and a broader
scope, could reduce redundant efforts in dataset generation
while enhancing in vivo model performance and facilitating
inter-study comparisons. The datasets used for deep learning
in ULM present comparable challenges and characteristics
regardless of the task addressed by the proposed model.
In this section, we review and compare existing approaches
for dataset generation based on simulations. We also review
methods that directly learn from in vivo data, which address
the domain shift that can exist between training simulations
and in vivo applications.

A. Formalism

ULM processing can be formulated as recovering multiple
microbubble positions, y, from an ultrasound signal, x. In a
supervised learning context, x represents the input data used
by the model, while y denotes the target labels that we aim to
estimate. Hence, ULM can be defined as the estimation of the
probability of microbubble positions from the given ultrasound
data, which corresponds to modeling the posterior distribution
p(y|x). With the same notation, the constitution of a dataset
can be formulated as sampling a collection of ultrasound sig-
nals with corresponding microbubble positions D = {(xi, yi)}
from the joint distribution, (xi, yi) ∼ p(x, y). Prior knowledge
regarding microbubble positions can be expressed by formulat-
ing assumptions on the marginal distribution p(y), referred as
prior distribution. Ultrasound physics and simulation models
describe the conditional probability p(x|y), which represents
the likelihood of an ultrasound signal, x, given microbubble
positions, y. Using the Bayes rule, the joint probability p(x, y)
can be decomposed to highlight the roles of the prior and the
conditional probability:

p(x, y) = p(x|y)p(y).

An essential assumption of supervised learning is that the
training set, Dtrain = {(xtrain,i, ytrain,i)}, which is sampled

from the distribution ptrain(x, y), and the test set, Dtest =
{(xtest,i, ytest,i)}, which is sampled from ptest(x, y), are in-
dependent and identically distributed (i.i.d.). Thus, the i.i.d.
hypothesis implies that ptrain ∼ ptest. In practice, training on
simulation and testing on in vivo data causes ptrain and ptest to
differ, which limits the validity of the i.i.d. hypothesis. Some
level of realism in the generation of ptrain is crucial and de-
pends on both the assumptions regarding the prior distribution
ptrain(y), and the validity of the underlying simulation model
of ptrain(x|y). It is also important to evaluate deep learning
models not only in vivo but also on i.i.d. simulated test data
to disentangle the impact of realistic datasets from model
expressive power. Since in vivo evaluation measures both the
dataset quality and its expressive power, i.i.d. evaluation is
critical to assess the model’s capacity to learn and address the
targeted task independently of the simulation quality.

B. Prior probability p(y): label generation

Sampling

Sampled microbubble 
positions

Structure prior
Uniformly sampled 

positions

Anatomical 
Acquisition Flow Model

Sampled trajectory with 
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Flow 
Modelling Sampling

A B
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Fig. 1. Representation of the different types of label generation
strategies illustrating sampling from different prior distribution. A: Uni-
form sampling of independent frames. B: Structure based sampling
of independent frames. C: Trajectory sampling based on anatomical
acquisition and simulated flow from [77]

In this section, we examine existing methodologies for
modeling microbubble distributions, the assumptions regarding
the simulation prior ptrain(y) and the implications regarding the
evaluation on i.i.d. datasets and in vivo. Existing studies are
listed in Table I with the corresponding prior distribution and
temporal context. Depending on the deep learning model task
(e.g., single-frame localization, tracking, velocity estimation),
and the use of temporal context, y can either represent po-
sitions in single, independent frames [64, 88] or trajectories
across multiple frames [67, 81, 89].

1) Single-frame simulations: In single-frame simulations,
some approaches have used spatially uniform sampling [64,
68, 69, 79, 84, 87, 90], while others have employed a spatial
distribution of scatterers conditioned by a given structure,
often mimicking vasculature [64, 66, 79, 88]. The structure
used to condition the prior have been handcrafted [66, 74],
simulated [88], based on ULM acquisitions [64, 79], or derived
from acquisitions from other modalities [67, 79, 89]. Using a
uniform spatial prior benefits from being high-entropy, which
may reduce biases when working with unseen vascular distri-
butions. It also allows for greater diversity and larger dataset
sizes. However, a uniform distribution does not accurately
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TABLE I
COMPARISON OF SIMULATED DATASET PROPERTIES FOR DEEP LEARNING APPROACHES IN ULM

Deep learning method Temporal context Training
MB prior

Testing
MB prior Structural Prior Ultrasound Simulation

Blanken et al. [78] Independent frames Uniform Uniform N.A. Non-linear propagation
and response

Chen et al. [79] Independent frames Uniform
and Structure Structure CAM Field II [80]

Chen et al. [81] Simulated flow Structure Structure CAM Field II [80] and convolution
with Gaussian PSF

Gu et al. [82] Independent frames Structure Structure Artificial Vasculature Convolution with
Gaussian PSF

Hahne et al. [66] Independent frames
from simulated flow PALA [6] PALA [6] Artificial structure Verasonics Research

Ultrasound Simulator

Liu and Almekkawy [83] Independent frames Uniform Structure Artificial vasculature Convolution with
Gaussian PSF

Liu et al. [64] Independent frame Uniform Structure Vasculature from
in vivo acquisition

Convolution with
Gaussian PSF

Luan et al. [84] Independent Frames Uniform Structure Artificial Vasculature High-resolution convolution
with Gaussian PSF

Milecki et al. [67] Simulated flow Structure Structure Vasculature from
ex vivo acquisition SIMUS [85]

Pustovalov et al. [86] Displacement map Structure Structure CAM
and Artificial Structure

Convolution with
experimental PSF

Shin et al. [20] Simulated flow Uniform Uniform N.A. Convolution with
learned distribution of PSF

van Sloun et al. [62] Independent frames Uniform Structure Artificial Vasculature Convolution with
Gaussian PSF

Youn et al. [69] Independent frames Uniform Uniform N.A. Field II [80]

Yu et al. [87] Independent frames Uniform Uniform N.A. Convolution with
Gaussian PSF

Zhang et al. [68] Independent frames Uniform Uniform N.A. Convolution with
Gaussian PSF

Zhang et al. [70] Independent frames Uniform Structure Artificial Vasculature Convolution with
Gaussian PSF

model microbubble positions constrained to blood vessels,
potentially reducing the validity of the i.i.d. hypothesis when
testing in vivo. Datasets based on a given structure allow
evaluation using standard ULM metrics typically used for in
vivo evaluation, such as separation power or full width half
maximum, often reported in literature [74, 91]. To combine
the advantages of reduced bias in training while allowing the
use of standard ULM metrics in evaluation, some approaches
have used uniform sampling for the generation of the training
set and vasculature-based sampling for in silico testing and
evaluation.

2) Multi-frame simulations: To generate realistic microbub-
ble trajectories, multi-frame simulations often use frameworks
composed of several stages. This typically involves a defined
structure and a flow model conditioned by the structure proper-
ties to generate realistic trajectories and velocities. Microbub-
bles are randomly seeded within the structure, and their trajec-
tories are computed using the physical flow model. The under-
lying structures and flow models can vary depending on the

approach. For example, Belgharbi et al. proposed a simulation
framework based on mouse brain vascular structures acquired
by 2-photon microscopy (2PM) [77]. The 2PM-acquired vas-
cular structure was segmented and converted into a graph
model using an existing framework [92]. Vessel radii from
the segmentation were stored as features of the graph nodes,
and a Poiseuille flow model was used to determine the velocity
of randomly generated microbubbles. Chen et al. [81] used a
binarized chorioallantoic membrane (CAM) dataset of chicken
embryos obtained through optical microscopy, and mouse and
rat brains obtained through ULM, to generate graphs and
simulate flowing microbubbles. Using the same CAM dataset,
Pustovalov et al. [86] proposed to use displacement maps to
generate microbubble motions. To address the dataset size
limitations inherent in methods relying on in vivo acquisitions
of vasculature, Lerendegui et al. proposed a framework to
generate vascular structure [93] using a recursively-generated
simulation framework. Flow and pressure were then simulated
based on Navier-stokes equations for an incompressible New-
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tonian fluid and Hagen-Poiseuille flow model. Microbubble
positions and trajectories were then randomly generated with
probabilities proportional to the vascular flow. This trajectory
simulation process has notably been used to generate the Ultra-
SR challenge dataset [73].

Alternatively to the low-entropy prior based on anatomical
structures, Shin et al. proposed a multi-frame simulation
approach with a high-entropy prior [20]. This approach was
based on a uniform distribution of initial positions and speed.
Microbubble motion was simulated using stochastic perturba-
tions of their directions added at each time step.

3) Considerations on choosing a prior: Using a low-entropy
prior based on realistic anatomical structures can improve the
overall performance of the trained model on similar data distri-
butions [79]. However, exact modeling of in vivo microbubble
positions and trajectories is challenging due to anatomical
differences between animal models, organs, and the scale of
observed blood vessels. The exact position and velocity of
microbubbles cannot be easily measured in vivo, and poten-
tially biased velocity measurements used in the flow model
may propagate to the training set. Underrepresented trajectory
patterns, such as spinning microbubbles in glomeruli [21],
might be undetected by a model trained with existing flow
models. Similar to domain randomization in reinforcement
learning, which has been proven efficient for transferring from
simulation to real-world applications [94, 95], using high-
entropy priors could improve the generalization capability of
deep learning methods in ULM. Regardless of the choice of
prior used for the training set, evaluation on unseen tests data is
crucial to distinguish between models underfitting, overfitting,
and out-of-distribution generalization. Evaluation datasets that
allow computation of widely adopted imaging metrics are
also critical for comparison with conventional ULM and other
modalities.

C. Conditional probability p(x|y): ultrasound simulation

In this section, we focus on the simulation of ultrasound sig-
nals based on microbubble positions. This simulation process
can involve deterministic steps, such as acoustic wave propa-
gation computation, and stochastic steps, such as speckle noise
addition. The entire simulation process can be formulated as
sampling from the conditional distribution p(x|y). We review
various simulation methods employed to model microbubble
echoes and techniques for noise addition, with the aim of
generating realistic ultrasound samples.

Several studies worked under the assumption of translational
invariance and linearity of the imaging system, allowing for
simulations based on the convolution of the scatterer distribu-
tion with an estimated PSF of the system [64, 82, 84, 87, 90].
To enrich datasets, the PSF parameters were randomized
to account for variations in size, intensity, and shape. The
parameter variation ranges were estimated based on in vivo
data. Alternatively, Shin et al. employed generative modeling
to sample a wide range of different PSFs based on in vivo
acquisitions [20].

Several ultrasound simulators have been proposed in the
literature to model acoustic wave propagation. Some are

mesh-based, like k-wave [96], which allows for simulation
of non-linear acoustics with multiple scattering and hetero-
geneous media. To allow for fine positioning of scatterers
and short computation time, most of the surveyed studies
have used particle-based simulators such as Field II [80] and
SIMUS [85], which are based on stronger prior assumptions of
linearity, weak scattering and the homogeneity of the medium.

Adding non-linear effect to capture the full response of
microbubbles [97] would allow the application of deep learn-
ing methods to process ULM data relying on the non-linear
response of microbubbles [98] and increase the realism of sim-
ulation of transducers with lower central frequencies. Trans-
ducers with central frequencies of 10 MHz and above often
have a bandwidth that captures only the fundamental response
of microbubbles, which can be modeled with linear simulators.
In contrast, lower frequency transducers, such as those used
in clinical settings, often capture the non-linear response of
microbubbles, allowing for sub-harmonic or harmonic imaging
applications but requiring more sophisticated models [97].
Inspired by the combination of k-wave and the Marmot-
tant model of microbubble response by Brown et al. [99],
Lerendegui et al. [93] proposed integrating the non-linear
microbubble response into a linear simulator, Field II, using a
two-step process. First, BuFF [93] uses Field II to estimate
the pressure at the microbubble position. The microbubble
response is then derived using the Rayleigh–Plesset equation
from the Marmottant model [97]. Finally, this response is used
to compute the signal received by the transducer using Field
II. This approach allows for fast computation using a widely
available simulator while modeling the full response of the
microbubble. In addition to modelling the full response of mi-
crobubbles [97], Blanken et al. [78] proposed to also account
for the non-linear propagation of ultrasound [100]. Blanken et
al. also showed that localization performance degraded when
using a polydisperse distribution of microbubbles, suggesting
a more challenging learning problem. Additionally, the non-
linear response of microbubbles varies with their parameters
(size, coating, manufacturers) [101, 102], making it difficult to
accurately model the large diversity of microbubble responses.
Accurately modeling p(x|y) for non-linear imaging remains
a significant challenge for the application of deep learning
approaches in non-linear ULM.

Adding to the diversity of simulators, different noise distri-
butions have been used. For example, some approaches have
employed white noise on B-mode or radiofrequency (RF) data
with varying SNR [64, 79, 84, 90], or Rice distribution on B-
mode, which is more specific to ultrasound data [20]. Aiming
to produce realistic noise, Xing et al. [71] used the SIMUS
simulator to generate speckle noise from a dense distribution
of scatterers. This approach is computationally intensive but
provides convincing results in vivo (see fig. 3).

Despite the availability of many simulators, determining
which one is best suited for specific needs remains unclear.
Empirical comparison between simulators and noise distri-
butions is a challenging task. Their effects are intertwined
and entangled with other factors such as model performance
and the choice of prior, and require comprehensive evaluation
of their impact on the in vivo performance of the models.
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This is essential before creating large-scale datasets that meet
most of the needs of existing studies, thereby enabling better
reusability and a wider scope of applications.

D. Learning using in vivo data

In this section, we review how existing approaches have
been able to learn directly from in vivo data, even in the
absence of ground truth for microbubble positions [20, 68, 87].
This ensures that the training and test sets are i.i.d., leading
to improved in vivo performance [20].

Blind deconvolution is an image processing technique,
which, when applied to conventional ULM, jointly estimates
the PSF and the position of isolated scatterers [103]. The
blind deconvolution algorithm estimates the scatterer distribu-
tion that produces the original signal when convolved with
the estimated PSF. This distribution is constrained with a
sparse prior and is estimated alternately with the PSF. In
practice, blind deconvolution can distinguish scatterers only
if they are separated by more than one FWHM of the local
PSF [103]. Improving on this method, Zhang et al. proposed
training two networks concurrently to estimate the PSF and
the scatterer distribution [68]. When including regularization
and constraints, this approach can be trained directly on in
vivo data and account for PSF variability through the trained
model. Li et al. [104] proposed a similar approach, leveraging
self-supervised learning on ex vivo CAM dataset. Shin et
al. [20] proposed LOcalization with Context Awareness ULM
(LOCA-ULM) that uses Generative Adversarial Networks
(GANs) to learn the distribution of in vivo PSFs. PSFs can be
extracted from in vivo datasets using conventional ULM, and
a generative model is trained to mimic these extracted PSFs
while another model discriminates the generated PSFs from
the real ones, providing a loss to train the generative model.
By modeling p(x|y) in the neighborhood of microbubbles
from in vivo data, LOCA-ULM reduces the domain shift
between the training distribution and the target distribution.
A potential caveat identified by the authors is that, when
extracting the PSF from in vivo data with conventional ULM,
the localization errors on microbubble positions may propagate
into the training dataset, which might inherently limit the
localization accuracy of LOCA-ULM [20]. Lok et al. [89] have
also used labels from conventional ULM to generate realistic
datasets, which were acquired in vitro in water tank or in vivo
in CAM datasets or from patient liver.

Leveraging both the precision of physics-based simulators
(i.e., exact match between the microbubble position and the
simulated echo) and the availability of in vivo data has been
explored by Yu et al. [87]. They proposed a method aiming to
accelerate an existing block matching algorithm for denoising
of ULM data before localization [105]. With a few in vivo
samples labelled with the block matching algorithm and many
labeled in silico samples, Yu et al. proposed using Domain
Specific Projection (DSP) to enable supervised learning while
accounting for domain variation, and self-supervised learning
to leverage the numerous unlabeled in vivo samples. The
requirement for labeled in vivo data limits the direct transfer
of this method from denoising to localization, but it paves

the way for other domain adaptation or domain generalization
approaches in ULM.

III. DEEP LEARNING IN ULM PROCESSING STAGES

Deep learning has been utilized at various stages of the
processing pipeline that forms ULM images from ultrasound
signals. This section is motivated by the diverse applications
of these approaches, and illustrates the range of opportunities
and formulations that can be employed. We examine each
approach in relation to the corresponding steps in the ULM
pipeline presented in Section I, identifying which conventional
limitations are addressed. This provides a framework for eval-
uating proposed deep learning methods independently of their
application stage. We classify existing applications into one or
several processing steps of the ULM pipeline and summarized
this view in Fig 2. Additionally, we discuss steps such as
aberration correction and denoising, which may enhance image
quality when incorporated into the ULM pipeline.

A. Aberration correction
Ultrasound applications in brain imaging are hindered by

the presence of the skull, which creates aberrations of the
ultrasound wavefront. ULM is similarly affected by aberrations
that may, e.g., impede microbubble detection, degrade the PSF,
or even cause vessel duplications. Aberration correction has
been extensively studied in the ultrasound literature [108].
Existing approaches often utilize speckle brightness [109],
measurements cross-correlation from neighboring transducer
elements [110], or iterative time reversal [111, 112] to estimate
phase differences. Specific methods for plane wave imaging
have also been proposed and leveraging the possibility of
correcting transmission aberration in postprocessing by, e.g.,
coherently compounding a large number of angled plane waves
[113, 114, 115]. Deep learning-based approaches have also
been developed [116, 117, 118, 119], though they are not
exclusively limited to ULM.

For pre-clinical studies using ULM, the skull is often
thinned or removed to create an imaging window for ultra-
sound imaging [3, 120]. In small animals, such as young
rodents, direct imaging through the skull is possible because
its impact on imaging quality is minimal [9, 23, 121]. To
simplify the experimental set-ups of pre-clinical studies and
allow for clinical applications, recent works have focused on
correcting aberrations specifically for ULM [122, 123, 124].
By leveraging the theoretical RF echoes of isolated microbub-
bles, these methods estimate a phase aberration function using
either iterative estimation and virtual focusing [122] or by
solving the inverse problem of the imaging process [123].

Similarly, leveraging individual microbubble echoes, the use
of complex-valued neural networks (CVNN) has been pro-
posed to estimate the phase aberration function based on mi-
crobubble IQ signals [71]. After detecting microbubbles using
a standard ULM pipeline, the IQ signal near the microbubbles
is isolated and realigned to serve as input to a CVNN, which
predicts the aberration function for this region. As shown in
Fig. 3, this approach demonstrates convincing in vivo results
in older mice (6 months), outperforming coherence-based
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Fig. 2. Overview of ULM processing and simulation pipeline, and the existing deep learning approaches. Dashed lines represent imperfect
correspondence with pipeline steps, full lines represent perfect replacement of one or more steps. We note that some pipeline stages can be
performed in different orders: such as the beamforming and the clutter filtering [66] or the tracking and localization [106]. A: Blanken et al. localize
directly the microbubble in on RF data in channel/fast-time space (i.e., the space where the data lies before beamforming with dimension for the
elements of the transducer, the transmits, and the fast-time), beamforming is needed after localization [78]. B: Xing et al. correct for aberration
based on IQ data [71]. C: Youn et al., and Hahne et al. use Singular Value Decomposition (SVD) clutter filter and localize the microbubble on
IQ in channel/fast-time space [66, 69]. D: Yu et al. enhance the Signal-to-Noise Ratio (SNR) denoising post SVD filtering[87]. E: The localization
step has been investigated by several studies [20, 64, 68, 70, 79, 83, 84, 86, 88]. F: Milecki et al. [67] and Lok et al. [89] proposed approaches
that temporally project the localization and detect trajectory in spatio-temporal domain, which merges localization and tracking step. G: Chen et
al. proposed Deep-SMV that directly estimate the velocity map skipping localization, tracking, and accumulation steps[81]. H: Zhang et al. [107]
introduced GRU-MT to solve the assignment problem to form microbubbles trajectories from detected positions.

correction approaches, especially in the presence of a larger
number of microbubbles. These results suggest that utilizing
CVNN alongside complex-valued IQ data, are relevant for
accurately modeling phase relations, and also contributes to
the increased robustness to high microbubbles concentrations,
exhibited by deep learning localization approaches [67, 79].

B. Beamforming

While initial ULM proof-of-concepts detected microbubble
echoes in channel/fast-time space prior to beamforming [128,
129, 130], more recent ULM studies performed beamforming,
typically using the delay-and-sum algorithm [131], before mi-
crobubble localization [74]. Recent efforts in developing deep
learning approaches for microbubble localization have focused
on utilizing the full information from either uncompressed RF
data or complex-valued IQ data [66, 67, 69, 78, 79]. To do
so, some studies used the signal in channel/fast-time space
and performed localization either in this space [78] or directly
in the image space with specific projection layers [66, 69].
Since only the signal corresponding to microbubble positions
needs to be projected into spatial coordinates, the beamforming
operation can be simplified [66], which can save processing
time and limit beamforming issues like grid artifacts.

Youn et al. [69] argued that overlapping PSFs caused by
high scatterer density induce a loss of information. To alleviate

this issue, they used a CNN that directly processes RF data
from every channel and every transmit to predict scatterer
positions in the beamformed space. To stabilize training by
reducing output map sparsity, they introduced a confidence
map prediction, from which the exact positions of scatterers
can be extracted in a second step. This CNN integrates both
localization and beamforming operations and includes absolute
positional embedding layers, specifically CoordConv [132],
which add channels encoding the pixel absolute positions
in the image. This model approach was validated in silico
and in vitro, and could resolve overlapping PSFs with better
performance than conventional ULM.

Driven by a similar motivation to utilize the entire RF
information, Blanken et al. proposed using a 1D CNN to
recover the time of arrival of microbubble echoes in RF
data from a single channel [78]. Microbubble responses and
acoustic wave propagation are not assumed to be linear. The
network was trained on the full response of monodisperse
microbubbles, making it suitable for lower frequency setups.
This approach performs the deconvolution of the RF signal,
which yields a super-resolved image after DAS beamforming.
Evaluating the importance of modeling the nonlinear response
of microbubbles is crucial for clinical applications, which
typically use lower frequencies than small animal studies.
As highlighted by the authors [78], applying a 2D end-to-
end approach (i.e., using all RF channels and producing an
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B C

A

Fig. 3. A: In silico results from [69] ©2020, IEEE. B-mode image and local maxima detection compared with the confidence map from the deep
learning model [69]. B : Illustration of results obtained with deep learning based aberration correction from [71]. In vivo imaging on 6 months old
mouse through intact skull and skin showing improved vascular reconstruction with the deep learning based approach using a CVNN in comparison
without aberration correction or with coherence based correction adapted from [110]. White arrows are pointing to disconnected or duplicated
vessels that are corrected using the CVNN correction. ©2024, IEEE C: Example of clutter filtering using deep learning of a CEUS acquisition of a
rat brain vasculature from [61]. The Deep unfolded model-based method, CORONA (c) from [61] is compared with SVD clutter filter [125] (a), the
model based approach, FISTA [126], (b),6th order Butterworth filter (d and e), and a ResNet [127] trained to perform clutter removal. Color bar is in
dB. Reused with the authorization of the authors ©2020, IEEE

output in beamformed space) is both promising and essential
for further applications but poses complexity issues during
training.

Building on these approaches, Hahne et al. [66] recently
proposed a method performed in channel/fast-time space and
successfully applied it in vivo, surpassing conventional ULM
and B-mode-based deep learning ULM. Their model utilized
complex-valued IQ data, with the real and imaginary parts

represented in the channel dimension, whereas previous ap-
proaches used uncompressed real-valued RF data. To perform
localization in channel/fast-time space on in vivo data, Hahne
et al. applied clutter filtering on RF data and used an affine
projection model to map ground truth from image space to
channel/fast-time space for network training and invert this
projection to recover predictions in image space. This affine
transformation replaces the beamforming operation while fully
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leveraging the sparsity of the localization prediction. Finally,
this approach demonstrates increased robustness to the domain
shift between training simulations and in vivo predictions [66].

C. Clutter filtering and denoising

To detect microbubbles, various strategies have been ex-
plored to remove tissue clutter, including non-linear imag-
ing [18, 98, 133, 134] and post-processing filtering [125]. In
ULM, SVD clutter filtering [125] is widely used to remove
tissue clutter due to its simplicity and efficiency. Alternative
filtering methods such as high-pass filtering [21, 91] and
mean removal [135] have also been applied, either com-
plementing or replacing the SVD filter. Several approaches
have been proposed to enhance the SVD clutter filtering step
using deep learning, primarily to address computation time
issues [61, 136, 137]. Among these, Solomon et al. [61]
proposed using Robust Principal Component Analysis (RPCA)
instead of SVD to leverage the spatial sparsity of microbubbles
alongside spatio-temporal information. To mitigate computa-
tion time issues, they employed deep learning to enhance the
convergence rate of the iterative algorithm used for RPCA
decomposition.

In practice, clutter filtering algorithms can be sufficient to
perform ULM in murine brain imaging. However, in less ideal
conditions (e.g., deeper field of view, thicker skull), the lower
SNR of microbubble echoes hinders both the localization and
tracking processes. To facilitate application on larger animal
models or clinical translation, studies have investigated the
impact of adding a denoising step after clutter removal. Model-
based approaches have used non-local means filtering [138] or
block matching [105] to improve SNR after clutter removal.
Being based on the assumptions of microbubble sparsity, these
approaches are specific to CEUS and ULM. Yu et al. [87]
proposed a data-driven approach to learn the denoising step
performed by block matching [105] from in silico and in
vivo data. This approach uses a domain adaptation method,
namely Domain Specific Projection from [139], to adapt the
representation learned by the network to the training domain
in silico and the testing domain in vivo. The training set
comprises in silico labeled data, and a large amount of in vivo
data, with only a limited number labeled with only a limited
number labeled with the predictions of the block matching
denoising algorithm. Semi-supervised learning leverages the
unlabeled in vivo data to enhance the model’s performance.
This approach improves the processing time for the denoising
step, making it more usable and enhancing the downstream
ULM image quality.

D. Localization

After beamforming and filtering, conventional ULM often
performs a simple detection step based on local maxima of in-
tensity [6], SNR [9], or local correlation with the PSF [15, 67,
138]. After detecting local maxima, sub-resolution localization
aims to determine the precise position of microbubbles within
small regions of interest centered on the local maxima. This
process relies on the assumption of having a single, isolated

scatterer in the region of interest and can be performed with ra-
dial symmetry or Gaussian fitting, among other methods [74].
When microbubble trajectories get closer or cross, causing
their PSFs to overlap, this assumption no longer holds, leading
to missed detections or increased localization errors. This
effect can be mitigated by injecting a lower concentration of
microbubbles, but this increases the acquisition time, limiting
the application and translation of ULM to clinical settings [33].
Deep learning approaches have been proposed to address the
issue of overlapping PSFs and to allow for higher microbubble
concentrations and reduced acquisition times. By learning
more complex patterns in simulations or by adding temporal
context to localization, deep learning methods have enabled
increased microbubble concentrations both in silico and in
vivo [20, 67]. Numerous approaches have been proposed, and a
more focused and exhaustive review is provided in section IV.

E. Tracking

Tracking algorithms are commonly used to remove mi-
crobubble detections that cannot be tracked across several
frames. Additionally, they can identify microbubbles over mul-
tiple frames and allow for track interpolation to compensate for
high velocity or missed detections. The tracking step is often
performed using the Hungarian or nearest neighbor algorithms
and may incorporate Kalman filtering to refine the assignment
solution [16, 26, 140, 141]. Deep learning improved Kalman
filter [142] has been applied jointly with the Hungarian al-
gorithm [73, 143], but designing deep learning alternatives
to conventional assignment algorithm remains challenging.
Tracking can be computationally intensive, and commonly
used algorithms struggle with high concentration areas and
microbubbles of variable velocities. The combined use of
temporal context, uncertainty in localization, and trajectory dy-
namics is difficult to model, making it an attractive application
case for data-driven approaches. Recently, Zhang et al. [107]
have proposed an approach that solves the assignment prob-
lem and improves the position estimation based on a Gated
Recurrent Unit [144] and using the positions predicted in the
4 preceding frames. The position estimations and predicted
trajectories are merged in post-processing, allowing to recover
full length trajectories. Sui et al. [145] proposed to use GANs
to perform the tracking step from localization maps. Some
approaches have merged localization and tracking to directly
predict more downstream results. Milecki et al. [67] proposed
Deep-stULM, an architecture incorporating temporal context
through 3D convolution. This method outputs the projection of
all microbubble positions for a short period, allowing the CNN
to learn temporal information and distinguish neighboring
microbubbles based on their trajectories. Similar output for-
mulation has been used while encoding temporal information
within channel dimensions [89]. These approaches were able
to reconstruct high quality density maps in vivo using high
microbubble concentration [67, 89]. To extend these applica-
tions to velocity estimation, Chen et al. [81] proposed Deep-
SMV, a Long Short-Term Memory (LSTM) based approach
that directly outputs velocity maps. Incorporating the tracking
step in Deep-SMV is particularly relevant when estimating
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velocity maps, as errors in tracking can significantly impact
velocity values.

IV. A FOCUS ON MICROBUBBLE LOCALIZATION

Given the large diversity of methods tackling the localiza-
tion stage in the ULM pipeline, this section provides a more
thorough focus on deep learning methods for localization.
Some examples of in vivo application on various animal
models and organs are displayed in Fig. 4. With an increasing
number of studies targeting performance improvements rather
than new applications, evaluating and comparing these ap-
proaches is becoming more critical. We aim to provide insights
on this topic and review how current approaches differ in terms
of evaluation, formalism, and architectures.

A. Evaluation

Performance evaluation of localization algorithms, whether
deep learning-based or not, is crucial for comparison and
further improvements in ULM. The ULTRA-SR challenge [73]
received 38 submissions and enabled fair comparisons of
several state-of-the-art approaches. Submitted approaches were
evaluated on both in silico test sets and in vivo data, with
the latter assessed by an expert panel. The datasets used for
evaluation were simulated using BUFF [93]. Heiles et al. also
proposed a benchmark to evaluate localization methods [74]
both in vivo and in silico. In vivo evaluation is performed with
objective metrics such as gridding or saturation, which can be
measured when evaluating new methods in future studies. RF
data were also made available [150], allowing the comparisons
of methods that utilize the full RF information in channel/fast-
time space [66, 69, 78] or in image space [67, 79]. This
benchmark has been used in recent studies [66, 106, 151].

When evaluating deep learning methods, the choice of
training simulation parameters, such as dataset size, prior
distribution, and simulation model, can greatly influence a
model’s performance. Thus, proposing fair evaluations for
deep learning methods also requires a companion training set.
Using a test set sampled from the same distribution as the
training set allows for i.i.d. evaluation, providing a fair quan-
tification of the model’s expressive power. The generalization
ability of deep learning methods also needs to be evaluated on
out-of-distribution examples, such as in vivo datasets and in
silico data sampled from a different prior distribution or using
a different simulation model. Since replicating deep learning
baselines requires the original training dataset, method imple-
mentation, and careful hyperparameter tuning, benchmarks are
important to avoid costly baseline comparisons. In this section,
we review how existing deep learning localization methods
have been evaluated in the absence of such deep learning-
specific benchmarks.

1) In silico evaluation: Many studies have performed eval-
uations on in silico datasets, as such test datasets are easily
obtained when the simulation process is already implemented
for the training set generation. Since the simulation process
is based on known microbubble positions, it allows for an
evaluation that penalizes false positives and precisely measures

localization error. In practice, in silico evaluation can focus on
two aspects: i.i.d. evaluation and out-of-distribution evaluation.

Model evaluation on i.i.d. datasets is particularly relevant for
studies proposing new architectures, as it allows for comparing
the representational power against pre-existing deep learning
methods. For example, this approach has been used to show
that transformer blocks could improve the model expressive
power [83] or to quantify the impact of using Sparse Tensor
Neural Networks in ULM [146].

By changing the simulation parameters, several studies have
explored the robustness of their proposed models on specific
out-of-domain generalizations, such as increased noise [68,
78], aberrations [20], and high microbubble concentration [67,
68, 152]. A key benefit of using deep learning models for
localization is their robustness in high-concentration scenarios.
Consequently, several studies have evaluated the robustness of
their methods under increasing concentrations and compared
them to conventional localization techniques [67, 68, 152].

In silico evaluations often employ pre-existing metrics to
measure the precision and recall of the models [64]. To
measure localization precision, distance-based metrics such as
RMSE can be used for detected localizations [64]. These are
standard evaluation metrics also found in PALA and ULTRA-
SR benchmarks [73, 74]. More aggregated metrics, such as the
Jaccard index or the Dice coefficient, have also been proposed
to evaluate the overlap between a ground truth angiogram and
its estimation from the model [67].

2) In vivo evaluation: Even though deep learning approaches
for ULM can be trained and evaluated on in silico datasets,
their targeted application is to perform well on in vivo datasets,
which, in that case, corresponds to out-of-domain general-
ization. Microbubble ground truth positions are not available
for in vivo datasets, making the evaluation of in vivo perfor-
mance challenging. This inherent limitation in ULM evaluation
can be mitigated by using anatomic validation with other
modalities [20, 79, 81], qualitative image assessments[67],
or evaluation metrics that do not require ground truth, such
as Fourier Ring Correlation (FRC) [91] or full-width half
maximum on arbitrarily selected regions.

The first deep learning approaches for microbubble localiza-
tion were evaluated in vivo and compared against conventional
ULM using full-width-half maxima [64, 67, 81, 84, 88]. These
comparisons provide convincing proof of feasibility and out-
of-domain generalization of the proposed methods.

To improve robustness and replicability, more recent ap-
proaches have used FRC [91] to evaluate the resolution of deep
learning methods in vivo [20]. FRC measures spatial resolution
without depending on selecting specific blood vessels, which
improves reproducibility and robustness. Additionally, Shin et
al. correlated the number of detections with Power Doppler
intensity to evaluate microbubble detection power [20].

To provide evaluations against anatomical ground truth,
Song and collaborators have used ex-ovo Chicken Embryo
CAM and optical imaging to obtain a ground truth of the
vasculature [20, 79, 81]. Measuring the overlap between the
vascular network estimated by the model and that imaged
by optical microscopy provides an evaluation method that is
robust to false detections or vessel duplicates due to aber-
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Fig. 4. Illustration of in vivo results in 2D from different deep learning localization approach in various organ and animal models (A, B, C, and
D) and in silico results in 3D from [146] (E). A: Rat spinal cord processed with Deep ULM [88] compared to Maximum Intensity Persitence (MIP)
image from [88] ©2020, IEEE. Acquisition performed with a frame rate of 400Hz and a transmit frequency of 15MHz. The black horizontal lines on
the intensity profile indicate full width half maximum and measure respectively 21µ m, 19µ m, and 20µ m for profiles 1, 2, and 3. B: Rat Kidney
from [64] ©2020, IEEE. Acquisition with a frame rate of 400Hz and a transmit frequency of 15.625MHz processed mSPCN-ULM [64], mUnet-ULM
adapted from [62], mDensenet- ULM adapted from [147], and CS-ULM [148]. C: Chicken embryo CAM image from [79]. Acquisition made with a
frame rate of 1000Hz and a transmit frequency of 20MHz and processed with DL-ENV, DL-Rf and optical reference from [79] compared with Fourier
based microbubble separation from [149] and conventional ULM. D: Rat brain image from [66] ©2024, IEEE. Data from PALA [74] processed with
SG-SPCN with and without Non-Maximum Suppression (NMS) on B-mode or IQ in channel/fast-time space [66] and compared with U-Net from
[88] and Radial Symmetry [74] on B-mode. E: In silico comparison in 3D for conventional ULM (center) and sparse tensor neural network (right)
with ground truth (left) from [146].

rations. Validation using MRI or CT in sheep brain, human
brain, and heart has been performed by conventional ULM
studies [18, 23, 135]. Such validation could be of interest for
deep learning as a more challenging evaluation in presence

of aberration, reverberation and strong attenuation. It has
been reported that registration can be challenging for such
validation [22].
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3) Future directions: Due to their relatively recent introduc-
tion, existing deep learning-based approaches have focused on
identifying the potential benefits of using deep learning for lo-
calization or on demonstrating feasibility in vivo. These kinds
of contribution are extremely valuable as ULM is gradually
applied to more complex imaging challenges, and the ability
of deep learning approaches to enhance ULM localization
in such setups remains an open question. Improving existing
ULM applications is equally important and requires fair and
repeatable evaluation procedures. Evaluation on publicly avail-
able datasets [74], with reproducible metrics [91], facilitates
the comparison with conventional ULM, existing deep learn-
ing methods, and future approaches. Since such comparisons
also depend on the training dataset used, it is important to
distinguish the impact of a new simulation framework from
using a new model architecture. Models can be evaluated with
a given training set and evaluation set, as is done in other
fields, but this requires publicly accessible benchmarks with
a companion training set. Such benchmarks should compare
models in the case of i.i.d distribution as well as in silico and
in vivo out-of-domain generalization to independently evaluate
expressive power and generalization ability. In silico compar-
ison with conventional techniques, which do not benefit from
small distances between the training and test distributions,
requires realistic noise levels and precautions to avoid test set
contamination, ensuring unbiased evaluation in favor of data-
driven approaches. The evaluation of the intrinsic quality of
training datasets in ULM remains an open question and could
be an impactful research direction.

B. Training formulation

In the literature, the localization task in ULM has been
formulated as an optimization problem in various forms to
train models. The choice of input and output representations
directly influences the design of loss functions, which are
crucial for model performance and robustness. This section
details existing formulations, focusing on how they differ
in terms of ultrasound representation, temporal context size,
and output formats, along with the implications for the loss
function.

1) Ultrasound representation: Many approaches directly use
B-mode images [62, 64, 79, 81, 83, 153]. RF data can also be
used either before [78] or after beamforming [79] as they allow
leveraging the full RF information, which contains both the
B-mode and the phase information. Chen et al. demonstrated
that using the full RF data rather than B-mode images, with
adequate spatial sampling, is beneficial [79].

To benefit from lossless IQ compression and reduce com-
putation cost, some approaches [66, 67] use the complex
valued IQ data, with the real and imaginary parts integrated
as channel data within real valued neural networks both prior
to and post beamforming. Complex Valued Neural Networks
(CVNN) [154], leveraging complex arithmetic and complex
model parameters, can also be used to process the complex-
valued IQ data in ultrasound image reconstruction [155] or for
aberration correction in ULM data [71].

2) Temporal context: In addition to ultrasound data repre-
sentation format, localization deep learning methods also differ
in the input temporal context size. Most localization deep
learning approaches in ULM process frames independently
and output a map of pixels containing microbubbles [64, 88].
Relying on temporal context to enhance detection, some
methods consider multiple frames simultaneously, raising
challenges in input handling and output formulation. Deep-
stULM [67], for instance, used a 3D spatio-temporal CNN
to process 512 frames, outputting a temporal projection of
microbubble positions. Lok et al. [89] encoded temporal infor-
mation in the channel dimension with a smaller context size,
reducing memory constraints. Gu et al. proposed predicting
accumulated ULM images directly from averages of 20 B-
mode images, bypassing localization maps [82]. To provide
further information, Deep-SMV [81] used 16-frame temporal
context and sequence modelling, specifically Long Short Term
Memory (LSTM) [156] to predict velocity maps. Lee et al.
proposed to use optical flow estimation to represent temporal
context [157]. Shin et al. proposed LOCA-ULM inspired
by Single Molecule Localization Microscopy (SMLM) ar-
chitecture [158] to incorporate temporal context from adja-
cent frames for improved localization in single frame [20].
Using a U-net to process three frames independently, and
then aggregating features in another U-net, their approach
predicts microbubble positions in the center frame. Obtaining
microbubble positions for each frame can facilitate integra-
tion into ULM pipeline and future applications. LOCA-ULM
effectively incorporates adjacent frame information, replacing
the conventional localization step, though it has been applied
to only small context sizes (3 frames). Recently, Pustovalov et
al. [86] also proposed an architecture inspired by DECODE
[158], which uses 3D convolutions to incorporate the temporal
context.

3) Loss formulation and output format: Intrinsically linked
to the output format, the loss function formulation, or training
objective, is key to the performance and robustness of deep
learning approaches. Most localization methods encode the
microbubble presence probability for each pixel of a grid
that typically matches the desired ULM image resolution.
Consequently, microbubble positions in these high-resolution
localization maps are very sparse, and training with naive loss
functions often leads to predicting zeroed outputs [67, 88].

To improve training stability, van Sloun et al. proposed
convolving the output maps with a Gaussian kernel to obtain
soft labels, while constraining the solution with a L1 sparse
prior [88]. Similarly, Liu et al. applied the convolution kernel
to both the network output and the labels [64]. Reducing
the Gaussian kernel’s standard deviation during training can
also promote sparser predictions [66], allowing for the use
of simple L2-based loss functions, such as Mean Squared
Error. Incorporating more complex loss functions based on
SSIM [79] or focal loss [84] can smooth the loss function
and improve training stability. Inspired by medical image
segmentation [159], some works have used the dice coefficient
either alone [67] or in combination with L1 applied to soft
labels [78]. While the dice coefficient automatically accounts
for class imbalance, it is not continuous with respect to spatial
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translation, which can reduce training stability. Zhao et al.
[160] leveraged Wasserstein GANs [161] to improve their
loss formulation and enhance localization performance. Shin
et al. [162] recently used a loss function based on the total
count of microbubbles and the prediction likelihood under a
probability density derived from the labels through a Gaus-
sian Mixture Model. Originally developed for SMLM [158],
this loss function is also adapted for sub-pixel localization,
reducing the impact of the output grid resolution and making
it highly relevant for localization tasks. It requires changing
the output format from a probability localization grid to a
multichannel output that encodes not only the probability of
the presence of a microbubble, but also its relative position
with respect to the center of the pixel. Changing the output to
a denser format, such as velocity maps [81] or non-overlapping
Gaussian confidence maps [69], also reduces training instabil-
ity and permits the use of simpler loss functions. Alternative
approaches using object detection formulations have also been
proposed [163, 164].

C. Architectures

Due to the significant diversity in problem formulations
for localization tasks, deep learning approaches tackling this
challenge often have distinct architectures. Some components
or properties are shared among these architectures, and in
certain cases, their specificity is limited to a few layers.
Many localization methods use CNNs with an encoder-decoder
structure [64, 67, 79, 88, 89], but typically differ in their
modeling of the upsampling techniques used to achieve super
resolution or the building blocks used for feature encoding.
In this section, we review the different building blocks em-
ployed in these architectures. We also explore the architectural
specificities of approaches operating in the channel/fast-time
space. Given that most of these architectures are limited to 2D
imaging, we review the few studies that focus on scalability
to 3D imaging.

1) Upsampling, super-resolution and grid artifact: Since most
existing architectures use encoder-decoder architectures, up-
sampling is required to project low-resolution encoded repre-
sentation back to the original input resolution. Furthermore,
in sub-resolution localization, the output is often projected at
a finer resolution than the input, necessitating additional up-
sampling. Upsampling operations are also common in natural
image super-resolution architectures and have been known for
leading to checkerboard artifacts [165], resulting in gridding
in the ULM image. Upsampling has been done using methods
such as nearest neighbor upsampling [67] or transposed con-
volution [62]. A more efficient approach is to use sub-pixel
convolution [166], which has been applied for localization in
ULM [64]. Sub-pixel convolution is empirically more robust to
checkerboard artifacts and is computationally more efficient.

It is also possible to reduce the number of upsampling
layers required with an improved output format, as done in
the DECODE architecture [20, 158], which allows for sub-
pixel resolution with limited dependence on the grid. However,
grid artifacts can still occur in high-concentration areas [158]
but can be mitigated by interpolating the model’s input [20].

Performing the localization in channel/fast-time space can also
be key in eliminating grid artifacts [66].

2) Architecture in channel/fast-time space: Performing lo-
calization prior to beamforming presents additional technical
challenges in terms of architectures. Unlike post beamforming
localization, where the microbubble echo is spatially limited,
the echo originating from a single microbubble in channel/fast-
time space reaches many or all of the elements of the trans-
ducer at different times. Depending on the temporal sampling
and the use of RF data rather than IQ, the receptive field
required to encode a microbubble echo with a single element
can already span up to 125 grid points [78]. When information
from several elements is considered, the receptive field needs
to be further increased to account for the time differences
depending on the field of view.

To increase the receptive field of their networks, Youn et
al. used an encoder-decoder structure with additional down-
sampling blocks [69]. Alternatively, Blanken et al. utilized
dilated convolutions [78]. Hahne et al. proposed adding a semi-
global bottleneck block to ensure a sufficiently large receptive
field [66]. These methods can also handle the beamforming
operation, which can be done implicitly through position em-
bedding [69] or with a learned projection of the detection [66].

3) Attention-based architecture: Inspired by recent advances
in NLP and vision from attention-based architectures and
transformers, transformer-based models have been applied to
the ULM localization task [65, 70, 83, 90, 164, 167, 167, 168,
169, 170]. For example, Liu et al. proposed SR-MT (Super-
Resolution Modified Transformer) [90], based on the Swin
transformer block [171], which employs shifted windows to
improve the efficiency of attention computation and allows for
modeling at various scales through its hierarchical architecture.
Similarly, Luan et al. [84] leveraged attention mechanisms
to enhance the representational power of localization models,
addressing concerns about the efficiency and scaling complex-
ity of self-attention. They proposed a cascade-axial-attention
(CAA) block to capture global context with reduced complex-
ity. Gharamaleki et al. [164] modified the problem formulation
to an end-to-end object detection framework and applied
DEtection TRansformers (DETR) [172]. To address inherent
limitations of DETR in small object detection, Gharamaleki
et al. [168] also proposed using Deformable DETR [173]
within a similar framework. Transformer-based architectures
have also been used to improve ULM reconstruction from
averaged B-mode images [65], showing improvements both
in silico and in vivo compared to previously introduced GAN-
based methods [82]. Zhang et al. [70] have also incorporated
Transformer Self Attention into a modified U-net architec-
ture, called ULM-TransUNet. ULM-TransUNet outperformed
conventional ULM and other deep learning ULM approaches
based on U-net or transformers in several settings, including
at high concentration in vivo.

4) Scaling to 3D imaging: ULM and DULM have been
extended to 3D imaging [6, 9, 16, 174] to offer a better
understanding of vascular anatomy and function, as well as to
reduce user-dependence on measurements due to the choice
of the imaging plane. 3D imaging is particularly challenging
due to the associated computational cost of an additional
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dimension, which is even more problematic for DULM as
the temporal dimension needs to be preserved. This com-
putational cost has significantly hindered the application of
deep learning approaches to 3D ULM, as both training and
inference can become problematic. Some solutions have been
proposed [146, 175]. Piepenbrock et al. proposed using a
3D CNN to perform localization and process each volume
independently [175]. Rauby et al. [146] used Sparse Tensor
Neural Networks [176] and tensor pruning based on inter-
mediate predictions to improve the scalability of CNN-based
architectures for ULM by leveraging temporal context and
high-resolution projection grids. In silico results are displayed
in Figure 4.

V. PERSPECTIVES

In this section, we detail current limitations either partly
or not addressed by existing approaches and that we find
to be critical for future improvements of deep learning in
ULM. Improvements in deep learning in ULM also requires
better evaluation and comparison to established baseline on
widely accepted dataset. We explore the prerequisite for such
evaluations.

A. Limitations and future challenges

1) Improving deep learning approaches: After forming
tracks by pairing localizations across frames, conventional
ULM approaches further leverage microbubble trajectory in-
formation. These trajectories can be used to compute clinically
relevant statistics at trajectory level. For example, the Sum
Of Angles Metric (SOAM) is computed directly on each
trajectory and has been used to estimate vascular tortuosity
in the mouse brain, showing significant differences between
young and aged mice [177]. Sensing ULM (sULM) utilized
trajectories metrics such as normalized distance, remanence
and dispersity [21, 22] to identify microbubbles travelling in
glomeruli. Trajectories can also be used to estimate blood flow
pulsatility [178] which has been link to AD and cognitive
decline [179, 180, 181, 182]. In addition to its clinical rele-
vance, using prior assumptions on microbubble trajectories can
improve position estimates and filter out detections based on
track length or global displacement. Inverting the tracking and
localization steps, to better leverage the temporal context and
continuity prior of trajectory, has also been shown to improve
localization performance [106]. Despite the importance of
microbubble trajectories in conventional ULM, current deep
learning approaches do not fully utilize such prior information.
They either perform single-frame localization with tracking
as a post-processing step or estimate temporal projections of
tracks [67, 89], which prevents downstream utilization of the
tracks. Formulating tracks as deep learning model outputs and
developing a differentiable loss to enable end-to-end learning
of trajectory-level predictions is currently an open problem in
ULM. Such formulations would allow for the joint estimation
of sub-pixel localizations and tracking across several frames,
using temporal context to disambiguate spatial measurement
uncertainty and vice versa.

Current deep learning approaches have mostly focused on
2D imaging, which heavily depends on the selection of the
imaging plane for reproducibility. 2D imaging is inherently
limited for velocity measurements due to planar projection
of trajectories and is sensitive to tissue motion caused by
out-of-plane displacements. Extending existing architectures to
3D imaging poses challenges in terms of memory usage and
computational cost required for model training and inference.
Dataset construction is also more challenging in 3D due
to the increased computational and storage demands. Some
solutions have been proposed to reduce these computations
by leveraging the sparsity of microbubble trajectories [146],
but they have not yet been applied in vivo.

2) Evaluation and Benchmarking: With the growing number
of deep learning methods for the processing of ULM, standard
methods to fairly compare deep learning approach become
more and more critical for the community. Akin to previous
comparison efforts between ULM methods [73, 74], a widely
adopted benchmark would benefit the community given that it
addresses the limitations of existing works. More explicitly, we
believe that such a benchmark have to fulfill several desiderata:

• Determined training set, in order to disentangle im-
provements in model architecture or problem formulation
from improvement in simulation procedure or impact
of dataset size. This training set can contain equivalent
signal in various forms (IQ/RF/B-mode) to allow for
flexibility in input representation as well as improvement
in several steps of the ULM pipeline. It also needs to be
large enough to allow for discrimination of representation
power with limited risk overfitting. Finally, the simulation
process needs to be realistic enough to limit domain shift
when transferring to in vivo application.

• Diverse evaluation datasets on several in vivo applica-
tions (organs, experimental set-up, animal model) but also
in silico to evaluate localization error on several various
microbubbles velocities, unseen trajectory pattern. PALA
benchmark [74] and ULTRA-SR challenge [73] datasets
are relevant and could be included in such a set of eval-
uations datasets. However, careful considerations have to
be taken to propose evaluation datasets with both similar
and different simulation parameters to the training set in
order to evaluate generalization and robustness of deep
learning model.

• Collection of robust metrics with known value for
conventional approaches as well as existing deep learning
approaches. ULM performance metrics such as Jaccard
index, lateral and axial error, gridding, FRC, and sat-
uration have already been proposed and used in the
literature [74, 91]. Works in biomedical image analysis
[183] have provided valuable recommendations on the
pitfalls to consider when designing and selecting these
metrics.

If the constitution of such benchmark would benefit the
community in terms of results reproducibility and comparison
between method, quality control and best practice guideline
from other fields[183, 184] should be adapted and imple-
mented to ensure that progress enabled could translate to
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Fig. 5. fULM comparison between conventional localization and LOCA-ULM from [20] showing the improved microbubble detection ability of
LOCA-ULM, allowing to reduce the required number of stimulation cycles. Reused with the authorization of the authors

robust improvements. In addition to the datasets and metrics,
other factors might prevent comparison between deep learning
approaches, such as limited availability of the code and
dataset to reproduce results, varying computation times, or
outputs format too different from microbubble trajectories.
When comparing deep learning models, especially with larger
datasets available, model complexity and computational costs
can become the limiting factor of performance, which makes
their comparison and reporting critical. Several studies have
reported computation times and comparison with existing
approaches [64] to highlight reduced computational costs. As
noted by the authors, these reports provide insights on compu-
tational efficiency rather than offering an absolute comparison,
which prevents comparison across different studies. Moreover,
computational efficiency can vary greatly depending on the
hardware used and the level of implementation optimization.
For example, deep learning library leverage highly optimized
convolution algorithm and parallel computing on GPU, which
can bias time-based comparisons of complexity. Analysis of
computational complexity, reporting the relation between the
output image size and the number of operations required to
process it, is crucial for further understanding and improve-
ment of processing time. Conventional ULM currently relies
on representing microbubble trajectories as tracks, and in a
near future downstream application and biomarkers are likely
to rely on such structure. A unified output format is essential
for fair comparison between approaches. Thus, when trying to
improve on existing applications and changing output format,
one needs to be cautious as it might hinder comparisons with
existing and future approach or limit the application to future
ULM development. However, these considerations should not
discourage proof of concept or feasibility study such as
velocity prediction [81] or ULM at high concentration [67, 89].

B. Successes and promises

The development of the aforementioned deep learning ap-
proaches in ULM in recent years has shown repeated suc-
cesses, proving their relevance in certain applications. Multiple

approaches have demonstrated good performance in vivo while
being trained in silico. This provides reasonable evidence that
current acoustic simulators are realistic enough to enable deep
learning models to generalize to real in vivo data.

Several studies [20, 64, 69, 70, 79, 84, 88, 167] have
provided consistent results showing that deep learning ap-
proaches are better suited for modeling ULM signals in high
concentrations of microbubbles. In silico comparisons have
been conducted under varying concentrations, showing better
localization performance for deep learning-based methods at
high concentration in 2D [20, 64, 69, 79, 84, 88, 167] and
in 3D [146]. In vitro studies have also shown similar results
[69]. In vivo comparison studies with conventional ULM
have also reported improvements when using deep learning
methods for ULM at high concentrations [20, 67, 70, 79].
The improvements were measured either in FRC, FWHM, or
number of detections/vessel saturations. Such findings pave
the way for faster ULM acquisition with higher microbubble
concentrations, which has already been applied to facilitate
functional ULM (see Fig. 5). Recent developments in model
architectures have been demonstrated that performance in high
concentration of microbubbles could be further improved [70].

Deep learning has also been very successful in accelerating
ULM processing. For certain processing steps, such as clutter
filtering or denoising, conventional algorithms with high per-
formance exist but are limited in application due to long com-
putation times [61, 105]. Using these algorithms to generate
labeled datasets in vivo and training deep learning models al-
lows for either direct approximation of the operation [87] with
faster computation times or acceleration of the convergence of
an iterative process [61]. Efforts to accelerate the processing
of ULM have also taken the form of directly forming the
ULM image with averaged B-mode images [65, 82, 153].
In addition to drastically reducing acquisition and processing
time [65, 153], such approaches could also be facilitates ULM
application in clinical setting where available echographs are
limited to frame rates much lower than typical ULM settings.
You et al. [185] have also leveraged ULM data and adversarial
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learning in vivo to enhance the resolution of Contrast Free
Power Doppler, suggesting that the range of deep learning in
ULM application could be broader than expected.

Along with the successes demonstrating the potential of
deep learning in ULM, further developments are anticipated to
further enhance ULM’s capabilities and applicability. As the
number of publicly available datasets and the interest of the
research community increase, the performance of deep learn-
ing approaches is expected to improve accordingly. Leveraging
larger datasets from multiple sources could enable the training
of ULM deep learning models that are robust to varying exper-
imental setups and consistently outperform conventional ULM
without intensive parameter tuning. The creation of larger
training sets and improved deep learning formulations could
also allow ULM to perform effectively on noisy or aberrated
acquisition, enhancing the reproducibility of ULM imaging
and its impact on pre-clinical and clinical studies. Applying
deep learning to steps of the ULM pipeline that are currently
handled by conventional methods could further enhance image
quality, practicality, or robustness. For instance, deep learning
techniques for motion correction, extensively studied in elas-
tography [186] using supervised [187, 188, 189, 190], semi-
supervised [191, 192], or unsupervised learning [193, 194],
could inspire the development of motion correction methods
tailored specifically for ULM.

Deep learning in ULM may also have an impact on the
adaptability of ULM to new experimental settings or trans-
mission sequences. Application to in vivo data requires data-
dependent tuning of conventional ULM, whereas some deep
learning approaches required limited parameter tuning. Indeed,
Liu et al. [64] have noted that their proposed mSPCN-ULM
was robust to training parameters and provided better flexibil-
ity in implementation of ULM in comparison to conventional
ULM. The authors mentioned that mSPCN-ULM still required
preprocessed inputs, depending on some external parameters.
Shin et al. [20] reported that their proposed LOCA-ULM
needed to be retrained when ultrasound imaging settings were
altered. Exploring ULM deep learning approaches robustness
across different acquisitions, imaging settings, or organs could
improve the adaptability of ULM to new experimental set-up
and reduce the user input needed to form an ULM image. With
the development of new transmission sequences [135, 195],
deep learning approaches may better detect PSF with varying
shape or microbubbles with “silenced” signal, given that the
training set incorporated such patterns. Such benefits are more
hypothetical, as constitution of training sets can be costly
and including enough variability to reach a sufficient level
of robustness might be unrealistic.

The current robustness of deep learning in ULM at high
concentrations, combined with efforts in task compression
within the ULM pipeline—such as training models to perform
multiple stages simultaneously and advancements in embedded
deep learning, could enable near real-time and online ULM in
the near future, greatly improving the practicality of ULM.
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[59] H. Strohm, S. Rothlübbers, K. Eickel, and M. Günther,
“Deep learning-based reconstruction of ultrasound im-
ages from raw channel data,” International Journal of
Computer Assisted Radiology and Surgery, vol. 15,

no. 9, pp. 1487–1490, 2020.
[60] J. Kim et al., “Deep Learning-based 3D Beamforming

on a 2D Row Column Addressing (RCA) Array for 3D
Super-resolution Ultrasound Localization Microscopy,”
in 2022 IEEE International Ultrasonics Symposium
(IUS), Oct. 2022, pp. 1–4.

[61] O. Solomon et al., “Deep Unfolded Robust PCA
With Application to Clutter Suppression in Ultrasound,”
IEEE Transactions on Medical Imaging, vol. 39, no. 4,
pp. 1051–1063, Apr. 2020.

[62] R. J. G. van Sloun, R. Cohen, and Y. C. Eldar, “Deep
Learning in Ultrasound Imaging,” Proceedings of the
IEEE, vol. 108, no. 1, pp. 11–29, Jan. 2020.

[63] B. Luijten, N. Chennakeshava, Y. C. Eldar, M. Mischi,
and R. J. G. van Sloun, “Ultrasound Signal Process-
ing: From Models to Deep Learning,” Ultrasound in
Medicine and Biology, vol. 49, no. 3, pp. 677–698, Mar.
2023.

[64] X. Liu, T. Zhou, M. Lu, Y. Yang, Q. He, and
J. Luo, “Deep Learning for Ultrasound Localization
Microscopy,” IEEE Transactions on Medical Imaging,
vol. 39, no. 10, pp. 3064–3078, Oct. 2020.

[65] G. Zhang et al., “ULM-MbCNRT: In vivo Ultrafast Ul-
trasound Localization Microscopy by Combining Multi-
branch CNN and Recursive Transformer,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency
Control, pp. 1–1, 2024.

[66] C. Hahne, G. Chabouh, A. Chavignon, O. Couture, and
R. Sznitman, “RF-ULM: Ultrasound Localization Mi-
croscopy Learned from Radio-Frequency Wavefronts,”
IEEE Transactions on Medical Imaging, pp. 1–1, 2024.

[67] L. Milecki et al., “A Deep Learning Framework for
Spatiotemporal Ultrasound Localization Microscopy,”
IEEE Transactions on Medical Imaging, vol. 40, no. 5,
pp. 1428–1437, May 2021.

[68] Z. Zhang, M. Hwang, T. J. Kilbaugh, and J. Katz,
“Improving sub-pixel accuracy in ultrasound localiza-
tion microscopy using supervised and self-supervised
deep learning,” Measurement Science and Technology,
vol. 35, no. 4, p. 045701, Apr. 2024.

[69] J. Youn, M. L. Ommen, M. B. Stuart, E. V. Thomsen,
N. B. Larsen, and J. A. Jensen, “Detection and Localiza-
tion of Ultrasound Scatterers Using Convolutional Neu-
ral Networks,” IEEE Transactions on Medical Imaging,
vol. 39, no. 12, pp. 3855–3867, Dec. 2020.

[70] G. Zhang et al., “In Vivo ultrasound localization mi-
croscopy for high-density microbubbles,” Ultrasonics,
vol. 143, p. 107410, Sep. 2024.

[71] P. Xing et al., “Phase Aberration Correction for In
Vivo Ultrasound Localization Microscopy Using a Spa-
tiotemporal Complex-Valued Neural Network,” IEEE
Transactions on Medical Imaging, vol. 43, no. 2, pp.
662–673, Feb. 2024.

[72] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza,
F. Pereira, and J. W. Vaughan, “A theory of learning
from different domains,” Machine Learning, vol. 79, no.
1-2, pp. 151–175, May 2010.

[73] M. Lerendegui et al., “ULTRA-SR Challenge: Assess-

This article has been accepted for publication in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2024.3462299

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON ULTRASONICS, FERROLECTRICS, AND FREQUENCY CONTROL 19

ment of Ultrasound Localization and TRacking Algo-
rithms for Super-Resolution Imaging,” IEEE Transac-
tions on Medical Imaging, pp. 1–1, 2024.

[74] B. Heiles, A. Chavignon, V. Hingot, P. Lopez,
E. Teston, and O. Couture, “Performance benchmarking
of microbubble-localization algorithms for ultrasound
localization microscopy,” Nature Biomedical Engineer-
ing, vol. 6, no. 5, pp. 605–616, May 2022.

[75] B. H. Menze et al., “The Multimodal Brain Tumor Im-
age Segmentation Benchmark (BRATS),” IEEE Trans-
actions on Medical Imaging, vol. 34, no. 10, pp. 1993–
2024, Oct. 2015.

[76] O. Bernard et al., “Deep learning techniques for au-
tomatic mri cardiac multi-structures segmentation and
diagnosis: Is the problem solved?” IEEE Transactions
on Medical Imaging, vol. 37, no. 11, pp. 2514–2525,
Nov. 2018.

[77] H. Belgharbi et al., “An anatomically realistic simu-
lation framework for 3D ultrasound localization mi-
croscopy,” IEEE Open Journal of Ultrasonics, Ferro-
electrics, and Frequency Control, vol. 3, pp. 1–13, 2023.

[78] N. Blanken, J. M. Wolterink, H. Delingette, C. Brune,
M. Versluis, and G. Lajoinie, “Super-resolved mi-
crobubble localization in single-channel ultrasound rf
signals using deep learning,” IEEE Transactions on
Medical Imaging, vol. 41, no. 9, pp. 2532–2542, Sep.
2022.

[79] X. Chen, M. R. Lowerison, Z. Dong, A. Han, and
P. Song, “Deep Learning-Based Microbubble Local-
ization for Ultrasound Localization Microscopy,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, vol. 69, no. 4, pp. 1312–1325, Apr.
2022.

[80] J. A. Jensen, “Field: A Program for Simulating Ul-
trasound Systems: 10th Nordic-Baltic Conference on
Biomedical Imaging,” Medical & Biological Engineer-
ing & Computing, vol. 34, no. sup. 1, pp. 351–353,
1997.

[81] X. Chen, M. R. Lowerison, Z. Dong, N. V. Chan-
dra Sekaran, D. A. Llano, and P. Song, “Localization
free super-resolution microbubble velocimetry using a
long short-term memory neural network,” IEEE Trans-
actions on Medical Imaging, vol. 42, no. 8, pp. 2374–
2385, Aug. 2023.

[82] W. Gu, Z. Yan, B. Li, C. Liu, D. Ta, and X. Liu, “GAN-
Based Ultrasound Localization Microscopy,” in 2022
IEEE International Ultrasonics Symposium (IUS), Oct.
2022, pp. 1–4.

[83] X. Liu and M. Almekkawy, “Ultrasound Localization
Microscopy Using Deep Neural Network,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 70, no. 7, pp. 625–635, Jul. 2023.

[84] S. Luan et al., “Deep learning for fast super-resolution
ultrasound microvessel imaging,” Physics in Medicine
& Biology, vol. 68, no. 24, p. 245023, Dec. 2023.

[85] D. Garcia, “SIMUS: An open-source simulator for med-
ical ultrasound imaging. Part I: Theory & examples,”
Computer Methods and Programs in Biomedicine, vol.

218, p. 106726, May 2022.
[86] V. Pustovalov, D.-H. Pham, and D. Kouamé, “En-
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