<  Retour au portail Polytechnique Montréal

Learning energy-efficient transmitter configurations for massive MIMO beamforming

Hamed Hojatian, Zoubeir Mlika, Jérémy Nadal, Jean-François Frigon et François Leduc-Primeau

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

Hybrid beamforming (HBF) and antenna selection are promising techniques for improving the energy efficiency (EE) of massive multiple-input multiple-output (mMIMO) systems. However, the transmitter architecture may contain several parameters that need to be optimized, such as the power allocated to the antennas and the connections between the antennas and the radio frequency chains. Therefore, finding the optimal transmitter architecture requires solving a non-convex mixed integer problem in a large search space. In this paper, we consider the problem of maximizing the EE of fully digital precoder (FDP) and HBF transmitters. First, we propose an energy model for different beamforming structures. Then, based on the proposed energy model, we develop a self-supervised learning (SSL) method to maximize the EE by designing the transmitter configuration for FDP and HBF. The proposed deep neural networks can provide different trade-offs between spectral efficiency and energy consumption while adapting to different numbers of active users. Finally, towards obtaining a system that can be trained using in-the-field measurements, we investigate the ability of the model to be trained exclusively using imperfect channel state information (CSI), both for the input to the deep learning model and for the calculation of the loss function. Simulation results show that the proposed solutions can outperform conventional methods in terms of EE while being trained with imperfect CSI. Furthermore, we show that the proposed solutions are less complex and more robust to noise than conventional methods.

Mots clés

beamforming; deep neural network; energy efficiency; fully digital beamforming; hybrid beamforming; massive MIMO; subarray hybrid beamforming; unsupervised learning

Sujet(s): 2500 Génie électrique et électronique > 2500 Génie électrique et électronique
Département: Département de génie électrique
Organismes subventionnaires: NSERC / CRSNG, Innovéé (INNOV-R Program)
Numéro de subvention: ALLRP 566589-21
URL de PolyPublie: https://publications.polymtl.ca/58727/
Titre de la revue: IEEE Transactions on Machine Learning in Communications and Networking (vol. 2)
Maison d'édition: IEEE
DOI: 10.1109/tmlcn.2024.3419728
URL officielle: https://doi.org/10.1109/tmlcn.2024.3419728
Date du dépôt: 17 juil. 2024 10:13
Dernière modification: 30 sept. 2024 22:32
Citer en APA 7: Hojatian, H., Mlika, Z., Nadal, J., Frigon, J.-F., & Leduc-Primeau, F. (2024). Learning energy-efficient transmitter configurations for massive MIMO beamforming. IEEE Transactions on Machine Learning in Communications and Networking, 2, 939-955. https://doi.org/10.1109/tmlcn.2024.3419728

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document