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ABSTRACT Hybrid beamforming (HBF) and antenna selection are promising techniques for improving
the energy efficiency (EE) of massive multiple-input multiple-output (mMIMO) systems. However, the
transmitter architecture may contain several parameters that need to be optimized, such as the power allocated
to the antennas and the connections between the antennas and the radio frequency chains. Therefore, finding
the optimal transmitter architecture requires solving a non-convex mixed integer problem in a large search
space. In this paper, we consider the problem of maximizing the EE of fully digital precoder (FDP) and
HBF transmitters. First, we propose an energy model for different beamforming structures. Then, based
on the proposed energy model, we develop a self-supervised learning (SSL) method to maximize the
EE by designing the transmitter configuration for FDP and HBF. The proposed deep neural networks
can provide different trade-offs between spectral efficiency and energy consumption while adapting to
different numbers of active users. Finally, towards obtaining a system that can be trained using in-the-field
measurements, we investigate the ability of the model to be trained exclusively using imperfect channel state
information (CSI), both for the input to the deep learning model and for the calculation of the loss function.
Simulation results show that the proposed solutions can outperform conventional methods in terms of EE
while being trained with imperfect CSI. Furthermore, we show that the proposed solutions are less complex
and more robust to noise than conventional methods.

INDEX TERMS Beamforming, deep neural network, energy efficiency, fully digital beamforming, hybrid
beamforming, massive MIMO, subarray hybrid beamforming, unsupervised learning.

I. INTRODUCTION

W IRELESS communication has been revolutionized
by massive MIMO (mMIMO) technologies, which

are already one of the key enabling technologies in the
fifth-generation (5G) of wireless networks thanks to their
potential to increase the transmission capacity through the
deployment of large-scale antenna arrays at the transmit-
ter or receiver side [1]. As a result, millimeter wave
(mm-Wave) communications can be used at longer ranges,
thus greatly increasing the bandwidth available to wireless
networks [2].

The conventional implementation of MIMO systems uti-
lizes a dedicated radio frequency (RF) chain for each
antenna element. Even though this approach is appropriate
for common small-scale MIMO systems, it is inadvisable for
mMIMO systems equipped with a large number of antenna
elements due to the high production costs and power con-
sumption associated with the RF circuitry. Therefore, even
though mMIMO is an important technology for future gen-
erations of wireless networks, it still faces many technical
challenges to improve its energy efficiency (EE) and, to date,
it remains a subject of ongoing research [3]. In light of
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this, hybrid beamforming (HBF) and antenna selection are
proposed as an effective way to facilitate the implementa-
tion and to improve the EE of mMIMO systems [4]. Indeed
HBF reduces the number of RF chains and digital-to-analog
converters (DACs), helping to improve EE. Accordingly, for
better EE, HBF techniques are being examined for 5G cellular
networks in the mm-Wave frequency bands, and will likely
also be found in sixth-generation (6G) networks [5].
Different HBF structures have been proposed to achieve

different trade-offs between cost, energy consumption, and
spectral efficiency (SE), which can be grouped into three
general categories, fully-connected HBF (FC-HBF) [6],
fixed subarray HBF (FSA-HBF) [7], and dynamic subar-
ray HBF (DSA-HBF) [8]. Each category has its advantages
and limitations. FC-HBF offers flexibility but has higher
implementation complexity. FSA-HBF balances SE and com-
plexity. Finally, DSA-HBF provides adaptability but with
additional design complexities. To configure a HBF structure,
one of the most prominent techniques consists in minimiz-
ing the Euclidean distance between the desired fully digital
precoder (FDP) and its hybrid counterpart [9]. However,
this technique requires designing the FDP, which is com-
putationally complex and not necessarily energy-efficient.
Furthermore, the number of possible HBF structures is
extremely large, making it complicated to find an optimal
HBF structure. Therefore, the question that arises is how to
efficiently design the best HBF structure in terms of energy
consumption and SE. Towards answering this question, our
first step consists of proposing an accurate energy model that
finds the power consumption of each component in different
beamforming structures. Our second step involves applying
machine learning-based approaches to design the beamform-
ing structure instead of using complex optimization-based
ones.

Thanks to the enormous success of deep learning (DL),
in a wide variety of engineering fields, deep neural networks
(DNNs) have received significant attention in recent years
and have been widely applied to wireless communication
systems [10], [11]. Despite the fact that training DNNs to
solve wireless communication problems can be computation-
ally intensive, it can take place offline and only the trained
DNN model will be used to make online decisions, thus
reducing the overall complexity. Different studies used DNNs
to address complex problems within the physical layer [12].
In supervised learning approaches, the time spent during the
data labeling procedure is not negligible. In addition, this pro-
cedure must be performed each time a new dataset is used for
training. In reinforcement learning (RL) approaches, an agent
collects online data as it interacts with its environment in a
trial-and-error manner. In mMIMO systems, since the HBF
action space is large, the convergence of the RL model
requires a large number of experiments. As a consequence,
self-supervised learning (SSL) demonstrates superiority over
supervised learning and reinforcement learning in terms of
its ability to autonomously extract meaningful patterns and

insights from large datasets without relying on explicit labels
or large training overhead.

To summarize, in this study, we aim to optimize the EE
of mmWave mMIMO systems by designing HBF structures
and FDP using DL-based techniques. The problem con-
sists of jointly designing the transmitter configuration and
beamforming weights that maximize the EE. To accomplish
this, we first propose an accurate energy model that takes
into account the power consumption of the different com-
ponents of the mMIMO system. Second, we propose a SSL
approach that incorporates two key components to design an
energy-efficient beamforming structure: (i) a novel loss func-
tion that considers different trade-offs between SE, energy
consumption, and active users, and (ii) imperfect channel
state information (CSI) during both the training and inference
phases.

A. RELATED WORKS
Some classical non-DL approaches are proposed for maxi-
mizing the energy efficiency and antenna selection in [13],
[14], [15], [16], and [17]. In [13], transmit antenna selection
is performed to maximize the EE in mMIMO systems. The
authors first approximated theoretically the mutual informa-
tion of the AS system and then used this approximation
to assess the EE performance. A similar approach as [13]
is proposed in [14] where the mutual information is first
analyzed and then applied to assess the performance of the
mMIMO system in different scenarios including maximizing
the EE. In [15], an iterative and low-complexity algorithm
is proposed. The algorithm optimized the transmit power
and the antenna selection to maximize the energy efficiency
in mMIMO systems. In [16], generalized least-square error
precoders are proposed where multiple restrictions on peak
power and the number of active antennas can be applied.
It was shown that these precoders can reduce the number of
active antennas effectively. In [17], the authors compared the
EE of six different phase-shifter (PS)-based and switch-based
HBF structures. However, given the hardware available today,
the energy model in [17] overstates the power consump-
tion of PSs, which makes the conclusion unfair to PS-based
approaches.

Many studies are proposed in the context of DL-aided HBF
design and antenna selection algorithms [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30]. In particular,
a received signal strength indicator (RSSI)-based FC-HBF
design implemented with supervised learning is proposed
in [18]. The authors of [19] suggested a supervised learning
approach for FC-HBF design under perfect CSI. Another
form of supervised learning is also proposed for the FSA-
HBF design with perfect CSI in [20]. The authors of [21]
proposed a reinforcement learning approach to design the
HBF. However, they assumed that the CSI is known per-
fectly, and due to the continuous action space, their method
relies on deep deterministic policy gradient (DDPG), which
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is computationally complex [31]. Authors in [22] proposed
a deep unfolding learning method to maximizing the SE. In
the context of unsupervised learning for the FC-HBF design,
the authors in [23] and [24] presented a novel HBF design
employing imperfect CSI for single base station (BS) and
cell-free mMIMO, respectively. However, their approaches
are only for FC-HBF. In [25], the authors proposed an unsu-
pervised learning approach for HBF and antenna selection
using a differentiable activation function for 1-bit PSs. How-
ever, the main objective is to maximize the SE of the mMIMO
system, and the authors neither optimized the EE nor con-
sidered an accurate energy model. In [26], [27], and [28],
the authors proposed a joint antenna selection and precod-
ing design with an iterative algorithm and a DL solution to
maximize the SE of multi-user multiple-antenna downlink
systems. The proposed DL approach assumes perfect CSI for
the training data, does not optimize the EE, and requires a
complex iterative algorithm to generate the training samples.
In [29] and [30], the authors proposed a supervised learning
approach to solve the antenna selection problem. However,
the proposed method only applies to FDP.

B. CONTRIBUTIONS
In this paper, we consider both FDP andHBF transmitters and
develop new SSL solutions that jointly design beamforming
and antenna selection while taking into account the power
consumption and insertion loss of all components. For FDP,
the proposed solution designs the FDP vectors along with
the antenna selection solution, while for HBF, thanks to a
multi-tasking DNN, the proposed solution directly provides
the analog precoder (AP) and digital precoder (DP) with the
power allocation among the antennas. A preliminary version
of this work was published in [32], where we only considered
maximizing the SE by designing the HBF for fixed and
dynamic HBF structures.

In summary, the contributions of this work are as follows:

• We propose an accurate energy model for the FDP and
HBF structures while considering the latest state-of-the-
art hardware solutions.

• We propose a SSL solution robust against imperfect CSI
to find the optimal energy-efficient antenna selection
for FDP and transmit power allocation for HBF consid-
ering the proposed accurate energy model. Due to the
binary constraints of beamforming connections, our SSL
approach makes use of the Gumbel-Sigmoid technique
inspired by Gumbel-Softmax. The Gumbel-Sigmoid
technique is designed such that it considers the con-
straints of all components involved in the beamforming
connections.

• We design an SSL loss function that takes into account
the SE, the energy consumption (EC) as well as the num-
ber of active users. Thanks to the designed loss function,
the proposed solution offers flexibility and can intelli-
gently adapt power consumption based on the number

FIGURE 1. Massive MIMO system model structure with one
transmitter BS employing HBF to serve a set of users.

of active users while effectively balancing between SE
and EC.

• We train the proposed SSL solution using imperfect CSI
for both the DNN input and the loss function computa-
tion, in view of achieving a system that can be trained
with real-world measurements. We also investigate the
noise tolerance of our approach and show that imperfect
inputs can even sometimes slightly improve the perfor-
mance of the mMIMO system.

• The proposed solutions are evaluated in a real-
istic ray-tracing channel model generated using a
three-dimensional model of an urban environment to
capture the geometry-based characteristics of the chan-
nel. The simulation results show that the proposed
solution outperforms conventional solutions in terms of
EE with lower computational complexity, and can be
adapted to achieve different trade-offs between SE and
EC.

C. PAPER ORGANIZATION AND NOTATION
The rest of the paper is organized as follows: In Section II,
we present the system setup followed by the baseline solu-
tions and the channel model. The proposed energy model
for the different beamforming structures is provided in
Section III. Section IV presents the proposed energy-efficient
SSL solutions for HBF and FDP, including a discussion
of the DNN structure, the training phase, and the online
phase. In Section V, we evaluate the performance of the
proposed algorithms by comparing them with state-of-the-art
solutions using a realistic ray-tracing channel model. Finally,
Section VI concludes the paper.

Matrices, vectors, and scalars are denoted by boldface
uppercase, boldface lowercase, and normal letters, respec-
tively. The notations (·)H , (·)T , (·)†, |·|, ∥·∥F , ∥·∥2,ℜ[·], ℑ[·],
In, ⊗ denote Hermitian transpose, transpose, Moore-Penrose
pseudoinverse, absolute value, Frobenius norm, ℓ2-norm, real
part, imaginary part, the n × n identity matrix, and element-
wise product, respectively.

II. SYSTEM MODEL AND BASELINES
Let us assume a time-division duplex (TDD) multi-user
mMIMO system where channel reciprocity is available such
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that the uplink channel estimate can be used for the downlink
transmission. The mMIMO system consists of a single BS in
a single cell equipped with NT antennas and NRF RF chains
serving NU single-antenna users simultaneously as shown in
Figure 1. The DP is performed in the baseband and then the
output signal goes through the RF chains. Each RF chain is
composed of a DAC, a low pass filter (LPF), a local oscillator
(LO) and a mixer, and is connected to the NT antennas. The
resolution for all DACs and PSs are fixed respectively to bD
and q. The RF chains are connected to the antennas through
PSs. The network of these connections and PSs, known as
AP, can be tuned based on different HBF structures.

A. CONVENTIONAL BEAMFORMING STRUCTURES
We first review the three conventional beamforming struc-
tures followed by their non-DL design methods, which are
used as baselines for our proposed solutions. Connections
between the RF chains and the antennas are represented by
a binary matrix �. For HBF, � = �HB ∈ {0, 1}NT×NRF , and
[�HB]n,m = 1 if antenna n is connected to RF chain m. For
FDP, � = �FD is an NT × NT diagonal binary matrix, with
�FD = diag(ω), where ω = [ω1, . . . , ωNT ] and ωn = 1 if
antenna n is activated.

1) FULLY DIGITAL PRECODER (FDP)
In FDP, each antenna is connected to an RF chain through the
circuit of DAC, LPF, LO, and a mixer. The signal received by
each user can be written as

yu = hHu

NU∑
u=1

uuxu + η, (1)

where hu ∈ CNT×1 stands for the channel vector from
the NT antennas of the BS to the user index u, x =

[x1, . . . , xu, . . . , xNU ] is the matrix of transmitted symbols for
all users, normalized to E[xxH ] =

1
NU

INU , η is the additive
white gaussian noise (AWGN) with mean 0 and variance
σ 2, and uu denotes the precoder vector for the uth user. The
SE of the near-optimal FDP, Uopt = [u1, . . . ,uu, . . . ,uNU ]
for single-antenna users is obtained by solving the following
problem:

max
{Uopt}

RFDP(Uopt) (2a)

s. t.
NU∑
u=1

uHu uu ≤ PTX , (2b)

where RFDP(Uopt) =
∑NU

u=1 log2(1 + SINR(uu)) , the signal-
to-interference plus noise ratio (SINR) of the uth user is given
by

SINR(uu) =

∣∣hHu uu∣∣2
NU∑
j=1
j̸=u

∣∣hHu uj∣∣2 + σ 2

, (3)

FIGURE 2. Example of connection matrices (�HB) of some
conventional HBF structures. Each green square indicates a
connection. Top: FC-HBF. Middle: FSA-HBF. Bottom: DSA-HBF.

and PTX is the normalized total transmit power constraint.
The baseline results presented in this paper are obtained by
solving (2) based on [23] and [33]. We refer to this approach
as near-optimal FDP. For a given connection matrix �FD, the
FDP is given by U = �FD × Uopt.

2) FULLY CONNECTED HYBRID BEAMFORMING
(FC-HBF)
In all HBF structures, we assume NRF ≪ NT. Regardless of
the chosen HBF structure, the signal received by each user
can be written as

yu = hHu A
NU∑
u=1

wuxu + η. (4)

The HBF vectors consist of a DP,
W = [w1, . . . ,wu, . . . ,wNU ] ∈ CNRF×NU , and an AP,
A ∈ CNT×NRF . Since the AP is a combination of the PSs and
combiners and it depends on HBF structure and connection
between the antennas and RF chains, we define it as follows:

A = Pq ⊗ �HB, (5)

where Pq ∈ CNT×NRF is the coefficient of the q bits PS
connecting the nth antenna andmth RF chain, where [Pq]n,m ∈

{ej2πk/2
q

: k ∈ {1, . . . , 2q}}. Therefore, the SE for a given
HBF (A,W) is given by

RHBF(A,W) =

NU∑
u=1

log2
(
1 + SINR(A,wu)

)
, (6)

and the SINR of the uth user can be expressed as

SINR(A,wu) =

∣∣hHu Awu
∣∣2

NU∑
j=1
j̸=u

∣∣hHu Awj
∣∣2 + σ 2

. (7)

In FC-HBF, we set �HB = �FC, and all RF chains are
connected to all antennas through PSs, combiners, and power

942 VOLUME 2, 2024



Hojatian et al.: Learning EE Transmitter Configurations for Massive MIMO Beamforming

amplifier as shown in Figure 2 (top), where the green boxes
show the connections. This structure thereby enables maxi-
mum design flexibility and therefore requires a large number
of PSs and combiners, which increase the implementation
cost and energy consumption. The AP of the FC-HBF can
be expressed according to (5) with

[�HB]n,m = 1 ∀n,m , (8)

[Pq]n,m ∈ {ej2πk/2
q

: k ∈ {1, . . . , 2q}} ∀n,m . (9)

Since all the antennas are connected to all the RF chains
through a PS with q-bit quantization, the feasible analog pre-
coder for nth antenna andmth RF chain is [A]n,m ∈ {ej2πk/2

q
:

k ∈ {1, . . . , 2q}}. Conventional HBF solutions either rely
on codebook-based solutions to limit the number of feasible
solutions [34] or, more rarely, use real-valued PSs [9]. The
conventional approach consists of first designing the FDP
matrix in (2). Then, the AP and DP are designed in such a way
that the resulting precoders approximate Uopt as follows:

minimize
A,W

∥∥Uopt − AW
∥∥2
F (10a)

s. t. (5), (8), (9), ∥AW∥
2
F = NU. (10b)

We obtain the FC-HBF solution of (10) using ‘‘PE-
AltMin’’ and ‘‘MO-AltMin’’ proposed in [9].

3) SUBARRAY HYBRID BEAMFORMING
Each antenna in a subarray structure is connected to only one
RF chain through a PS. Consequently, the total number of PSs
is reduced to NT, instead of NT × NRF in the FC-HBF. In the
subarray HBF structure, we consider two types of connection:
(i) a structure equipped with fixed connections, known as
fixed subarray HBF (FSA-HBF), or (ii) a structure equipped
with dynamic connections, known as dynamic subarray HBF
(DSA-HBF). Examples of possible connection matrices for
each case are shown in Figure 2. The DSA-HBF structure
enables the antennas and the RF chains to be dynamically
switched at each time interval in response to changing condi-
tions. It was shown that such a dynamic structure significantly
enhances the SE of the system by providing more degrees
of freedom in the HBF design compared to a FSA-HBF
structure, and reduces the power consumption compared to
the FC-HBF structure [8]. Therefore, based on the general
definition of the AP (A = Pq⊗�HB), the constraint onmatrix
�HB for subarray HBF is given by

NRF∑
m=1

[�HB]n,m = 1 ∀ n. (11)

To find the precoder matrices for FSA-HBF, the general
approach described in (10) for FC-HBF can be used. For
the DSA-HBF, the connection pattern (�HB) between the RF
chains and the antennas is dynamic and needs to be optimized,
resulting in a large design space.

B. PROBLEM DEFINITION
The main objective of this paper is to maximize the EE
of the mMIMO system by selecting the antennas and design-
ing the beamforming structure. For the FDP case, the problem
consists of finding the precoder matrix U and antenna selec-
tion �FD = diag(ω) that maximize the EE, while achieving a
desired minimum average SE denoted as Rd. More formally,
we seek to solve the following optimization problem:

maximize
U,�FD

RFDP(U × �FD)/PFDP (12a)

s. t.
NU∑
u=1

(uu ⊗ ω)H(uu ⊗ ω) ≤ PTX, (12b)

[�FD]n,n ∈ {0, 1}, ∀n, (12c)

RFDP(U × �FD) ≥ NURd, (12d)

where PFDP is the total power consumed by the BF compo-
nents.

Similarly, the HBF design consists in finding the precoder
matrices W and A and the power allocation that maxi-
mizes the EE. Therefore, we have the following optimization
problem:

maximize
A,W

RHBF(A,W)/PHBF, (13a)

s.t.
NU∑
u=1

wH
u A

HAwu ≤ PTX , (13b)

A = Pq ⊗ �HB, (13c)

[�HB]n,m ∈ {0, 1}, ∀n,m, (13d)

RHBF(A,W) ≥ NURd, (13e)

where PHBF is the total power consumed by the HBF trans-
mitter, and again Rd is the minimum average required SE.
The power consumption PFDP and PHBF will be described in
detail in Section III. In this paper, for simplicity, we consider
a total power constraint for the transmitter, where the power
transmitted by each antenna is not necessarily equal or limited
to PTX/NT. It should be noted that in HBF, turning off an
antenna does not necessarily correspond to deactivating an
RF chain, whereas in FDP, each antenna is connected to
one RF chain, and thus turning off an RF chain leads to the
deactivation of the corresponding antenna.

C. CHANNEL MODEL
The experiments presented in this paper are based on the
generic deep learning dataset for mm-WavemMIMO systems
(known as deepMIMO) [35], which provides a channel vector
h of length NT for each user position on a quantized grid.
AnNT×NU channel matrix entries in the dataset are obtained
by concatenating the NU channel vectors randomly selected
from the available user positions of the considered area.

Since we consider TDD communication with channel reci-
procity, the estimated CSI in the uplink can be employed
for downlink. However, due to channel estimation errors,
the downlink channel cannot be perfectly estimated. Thus,
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FIGURE 3. General beamforming structure. (a) Hybrid
beamforming structure. (b) Fully digital precoder structure.

to model the channel estimation error, the BS uses the min-
imum mean square error such that the estimated channel
matrix is given by [36]:

Ĥ =

√
1 − β2H + βϵ, (14)

where H = [h1, . . . ,hNU ]
T is the actual channel matrix, the

scaling coefficient β ∈ [0, 1] represents the reliability of the
estimate, and ϵ ∼ N (0, σ 2

e ) is an error matrix modeled as a
zero-mean Gaussian noise with variance σ 2

e . Unlike previous
DL-based studies, where perfect CSI is available during the
training of the DNN, in this work, we propose to use the
imperfect CSI (Ĥ) not only as the input to the DNN but
also to compute the loss function during the training phase.
In Section V, we further evaluate the impact of the imperfect
CSI by varying the value of β and show that a moderate level
of imperfection in CSI can act as a regularizer for the DNN
and slightly improve the SE.

III. ENERGY MODEL
In this section, we present an energy model for the different
FDP and HBF hardware configurations, considering both the
direct energy consumption as well as the energy consumption
resulting from the insertion loss of each component.

A. GENERAL BEAMFORMING STRUCTURE
We consider a regularity assumption where components of
the same type have the same input/output interface, i.e. their
inputs and outputs are connected to the same type and number
of components. This assumption is generally true because it
eases the conception of generic circuits.

To better represent each HBF structure, we suggest a gen-
eral template form as shown in Figure 3 (a), where a given
antenna is connected to a combiner having c ∈ {1, . . . ,NRF}

inputs. Each input of a combiner is connected to the output

TABLE 1. Energy model notations and parameters.

TABLE 2. Hardware complexity comparison.

of a phase shifter. Then, each phase shifter is connected to an
RF chain through a switch. The number of switches is ψ ∈

{1, . . . ,NRF}. As a result, the analog precoder can be fully
characterized by specifying the tuple (ψ, c). For instance,
for the three conventional HBF structures that we discussed
previously, we have:

• (NRF,NRF) for the FC-HBF structure. In the FC-HBF
structure, all the switches are connected (i.e.,ψ = NRF),
while the outputs of all the PSs are combined before each
antenna i.e., c = NRF.

• (NRF, 1) for the DSA-HBF structure. In DSA-HBF, only
one switch can be connected at each time interval, there-
fore c = 1, while there are possible connections for all
the switches, thus ψ = NRF. It should be noted that
such configuration for switches works like amultiplexer.
Thus, in a practical system, the switches are replaced by
a ψ × 1 multiplexer.

• (1, 1) for the FSA-HBF structure. In FSA-HBF, each
antenna is only connected to a fixed RF chain (i.e., c =

1), while the connection is fixed i.e., ψ = 1.

The hardware complexity of different beamforming tech-
niques is compared in Table 2.

B. ENERGY CONSUMPTION ANALYSIS
Wenow describe the energy consumption of each component,
and we list the most recent state-of-the-art hardware solu-
tions. We consider components that are suitable for operating
in the frequency range of 20-40 GHz.

A component of the set {D,L,M,LO,9,8,C,PA} is
denoted by o and the correspondence between a component
and its notation is defined in Table 1. We denote ILo as the
insertion loss of passive component o and when o depends on
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some parameter x, we use ILo(x). The average power dissi-
pated by the active component o is denoted as Po, or Po(x)
if o depends on the parameter x. See Table 1 for the list
of components and their parameters. Note that the power
dissipated by the wires is neglected and when c = 1 there
is no need for a combiner (i.e., ILC(1) = 0 dB). Likewise,
the switches can be replaced with wires when ψ = 1 or
ψ = c, that is IL9 (1) = IL9 (c) = 0 dB, since all possible
connections are always established.

In our energy model, we consider the possibility of turning
off the RF chains or antennas to save power. The nth antenna
or the mth RF chain is turned off when the nth row or the
mth column of the matrix � is zero, respectively. Therefore,
we can define NT(�) = {n :

∑NRF
m=1[�]n,m > 0} and

NRF(�) = {m :
∑NT

n=1[�]n,m > 0}, as the set of activated
antennas and RF chains, respectively.

1) RF FRONT-END
The RF front-end corresponds to the circuitry between the
antenna and the DAC. As shown in Figure 3 (b), for the FDP,
this consists of low pass filters (LPFs), mixers, local oscil-
lators (LOs), switches, and power amplifiers (PAs). On the
other hand, in Figure 3 (a), the HBF requires a network of
PSs, splitters, and combiners in addition to the components
described for the FDP. Mixers, combiners, switches, and PSs
are assumed to be passive devices that introduce insertion
loss.

For the mixer, based on the recent solution in [37], we con-
sider ILM = 6.4 dB. The insertion loss of the PS and
the combiner plays a key role in designing energy-efficient
HBF, especially for the FC-HBF, where all the RF chains are
connected to all the antennas through PSs and combiners. In
Table 3, we list the insertion losses of PSs from some recent
state-of-the-art references. Based on this table, we choose
the average insertion loss, which is IL8 = 4.5 dB, and we
assume ILC = 1.8 dB [38]. In the forthcoming paragraphs,
we will demonstrate that the insertion loss resulting from PS
and combiners in low-power signals is negligible due to the
high transmit power involved. For DSA-HBF, the switches
dynamically change the connections between the RF chains
and the antennas to improve the flexibility of the structure.
Since these insertion losses are in low power and they do not
have a big impact on the final power consumption, we assume
IL9 (ψ) = 1.1 dB for the other values of ψ , by considering
single pole single throw (SPST) switch [39].
Now, denoting by PoutBB the output power of each RF chain,

the input power of the power amplifier before the nth antenna
for all structures of the HBF (in mW) can be written as

Pin,nPA,HBF =
PoutBB

ILCIL9 (ψ)IL8ILM

∑
m∈NRF(�)

[�HB]n,m∑NT
n=1[�HB]n,m

,

(15)

where IL8 denotes the insertion loss of PSs and insertion loss
values are expressed in a linear scale. In the FC-HBF, where
all the RF chains are connected to the antennas (�HB given

TABLE 3. Passive phase shifter insertion loss comparison.

in (8)), we have (ψ, c) = (NRF,NRF) and IL9 (ψ = c) = 1.
For DSA-HBF with the structure of (ψ , c) = (NRF, 1) and
the connection matrix �HB in (11), due to insertion loss of
switches, we have IL9 (ψ) = 1.1. In FSA-HBF that has
a structure (ψ, c) = (1, 1), there are neither combiners nor
switches. As a result, IL9 (1) = 1, and ILC = 1. Similarly
for the FDP, as shown in Figure 3 (b), the input power of the
power amplifier on the nth antenna can be obtained as

Pin,nPA,FDP =
PoutBB
ILM

. (16)

Finally, the direct current (DC) power drawn by the nth active
power amplifier PPA, can be written as

PDC,nPA,BF =
PnTX − Pin,nPA,BF

α
, (17)

where α is the power-added efficiency (PAE) of the linear
power amplifier (LPA), PnTX is the transmit power of the
nth antenna, and BF should be replaced with HBF or FDP
according to the chosen transmitter type. Based on the recent
solution for power amplifier listed in [44], [45], and [46],
we consider an average PAE of α = 0.36. It is worth men-
tioning that in Equation (17), considering Pin,nPA, HBF ≪ PnTX,
the insertion loss of the passive components in (15) has a
negligible impact on the power consumed by the APs.

2) DIGITAL TO ANALOG CONVERTER
DACs are among the components having the largest power
consumption in wireless applications. The power consumed
by a DAC (PD) is a linear function of the sampling frequency
(fs) and the figure of merit (FoMD) of the converter, and
grows exponentially with the number of bits of resolution
(bD) as PD = FoMD × fs × 2bD [47]. The sampling fre-
quencies for ultra wide-band applications are in the range of
0.5-1 GHz. It is shown in [47] that in terms of required signal-
to-quantization noise ratio (SQNR), FDP required 2 bits less
than HBF. Therefore, we assume bD = 4 for FDP and bD =

6 for HBF, respectively.Moreover, based on [48], we consider
FoMD = 54.5 fJ/conv.

3) LOW PASS FILTER IN TX
The output of the DACs will require analog LPF to reject
spectral images and maintain out-of-band emission limits.
For an m′-th order active LPF with cutoff frequency fc, the
FoML is the power consumed per pole per Hertz [49]. The
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power drawn by LPF is given by PL = FoML × fc×m′. Based
on [49], we assume a first order LPF with fc = 500MHz, and
FoML = 1.4 mW/GHz. Furthermore, we define PLO as the
power consumed by the mixer from the LO and we consider
PLO = 10 dBm [50].

4) TOTAL ENERGY CONSUMPTION
Now, putting it all together, the total power consumed by a
given beamforming structure can be written as follows:

PBF =
∣∣NRF(�)

∣∣(PL + PLO + PD(bD))

+

∑
n∈NT(�)

PDC,nPA,BF, (18)

where PPA,BF should be replaced with either PPA,HBF
or PPA,FDP according to the transmitter type and � ∈

{�FD,�HB}. In this paper, we focus on passive PS, but we
note that active PS can be easily considered in the model by
setting IL8 to 1 and adding the power consumption of all
active PSs to (18). The energy consumption EBF can then be
obtained with EBF = Ts × PBF, where Ts is the duration of
a symbol. When considering a fixed symbol duration, min-
imizing the power consumption is equivalent to minimizing
the energy. Therefore, we evaluate the EE as b/s/Hz/W. It is
interesting to see that based on (15), considering passive
PSs and combiners, the power consumed by different HBF
structures is similar since the insertion loss of the passive
components is applied on the low power signals, before the
power amplifiers. However, in terms of hardware complexity
and cost, shown in Table 2, the subarray HBF ismore efficient
than FC-HBF.

In equations (6) and (18), we observe that both the SE and
the EE are influenced by the matrix �. This matrix defines
the connection between the RF chains and the antennas.
Having more connections results in higher SE as it increases
beamforming flexibility. However, each connection corre-
sponds to the use of an RF chain in FDP, and in the case of
HBF, it involves a PS and a combiner, leading to increased
costs and energy consumption. This dependency makes the
optimization problem in (13) difficult to solve. Consequently,
to address this issue, we propose a novel SSL solution in the
following sections. This approach aims to jointly optimize
both SE and EE.

IV. ENERGY-EFFICIENT BEAMFORMING DRIVEN BY
DEEP SELF-SUPERVISED LEARNING
In this section, we describe the SSL solution to design
the antenna selection and efficient HBF as well as FDP.
We start by describing the architecture of the proposed DNN
in Section IV-A. Then, the proposed method is divided into
two phases: the training phase is described in Section IV-B,
and the online phase is described in Section IV-C.

A. DEEP NEURAL NETWORK ARCHITECTURE
The input and the hidden layers of the proposed DNN archi-
tecture are common for both the FDP and the HBF structures.

FIGURE 4. DNNcore architecture which is identical for both HBF
and FDP.

FIGURE 5. Proposed DNN architecture for (a) Hybrid
beamforming, (b) Fully digital precoder.

However, the output layers are different for each BF structure.
We start by describing the architecture of the input and the
hidden layers denoted as DNNcore as shown in Figure 4. Then
in the following subsections, we describe the architectures of
the output layers of the HBF and the FDP.

The input of the DNN is given by the imperfect chan-
nel matrix Ĥ given in (14). To improve the representation
learning, we normalize the input to H̄ = Ĥ/∥Ĥ∥

2
F such

that ∥H̄∥
2
F = 1. Then, we separate the real part ℜ{H̄} and

the imaginary part ℑ{H̄} of H̄ into two channels that are
fed to the first convolutional layer (CL). The models are
designed to support a maximum number of active users,
which we denote as NU,max. DNNcore consists of 2 CLs
16@NT × NU,max where 16 is the number of channels and
NT × NU,max is the dimension of each channel followed by
1 CL 8@NT × NU,max. The kernel size is 3 × 3 for all CLs.
The CLs are followed by 2 fully-connected layers (FLs), each
with 1024 neurons. The ‘‘Leaky ReLU’’ activation function
and batch normalization are used after all layers except for the
output layers. This DNNcore is then combined with different
output layers to form the HBF model, called efficient HBF
network (E-HBF-Net), and the FDP model, called efficient
FDP network (E-FDP-Net). The models are relatively small.
For example, for NT = 64, NU,max = 8, the total number
of parameters including the output layers in E-HBF-Net is
5.8M (with NRF = 8), and 4.9M in E-FDP-Net. A detailed
complexity analysis is presented in Section V-D.

1) OUTPUT LAYERS FOR HBF
As shown in Figure 5 (a), we divide the output of the last FL
into 4 parallel layers. The first and second parallel layers, both
of size NRF × NU,max, generate the real and imaginary part
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of the DP. The output of the third parallel layer generates the
AP, thus its dimension isNRF×NT. The output of AP can also
be adapted to different PS resolutions. It is shown in [32] that
using the straight-through estimator (STE) technique, we are
able to have different numbers of quantization bits for the PSs.
In this paper we again consider the same approach for the
output of the DNN dedicated for PS quantization in AP. The
fourth layer of size NRF × NT designs the matrix �HB.
As we described before,�HB must be a binarymatrix. Typ-

ically, this binary constraint requires using the ‘‘Sigmoid’’
function during training and then, during the online phase,
applying a rounding technique to transform the real values
into binary values. However, we found that this approach does
not lead to good results for SSL, because the SE measured
during training can be very different from the actual SE mea-
sured during testing. To solve this problem, we propose to use
a differentiable approximation, called ‘‘Gumbel-Sigmoid’’
during training inspired by the ‘‘Gumbel-Softmax’’ estima-
tor [51]. The Gumbel-Softmax approximation is a technique
that allows sampling from a categorical distribution dur-
ing the forward pass of a neural network, by combining
a re-parameterization trick and a smooth relaxation. More-
over, since the 2-class categorical probability using softmax
can be reparameterized using the Sigmoid function, it is
also known as ‘‘Gumbel-Sigmoid’’. The connection between
the RF chains and the antennas can be represented using a
categorical binary distribution. Hence, defining πn,m as the
probability that antenna n is connected to the RF chainm, then
we can form an NT × NRF matrix 5 that corresponds to the
probability states between antenna n and the RF chainm. The
Gumbel-Softmax function, G(5), applied to each element of
the matrix 5 can then be defined as

�̄HB = G(5) =
exp((log(5) + g)/τ )

exp((log(5) + g)/τ ) + exp(g′/τ )
, (19)

where �̄HB is the output of the DNN, and g and g′ are inde-
pendent samples with zero mean and unit variance, drawn
from the Gumbel distribution. Note that the exp(·) and log(·)
functions are applied element-wise when taking a matrix as
input. The parameter τ is called the ‘‘Gumbel temperature’’.
When τ → 0, G(5) tends to the categorical distribution, but
when τ → ∞, it converges to the uniform distribution [51].
Therefore, there is a trade-off between small temperatures,
where sample vectors are close to one-hot but the variance of
the gradient is large, and large temperatures, where samples
are more uniform but the variance of the gradient is small.
We thus consider τ as a hyper-parameter to be optimized in
our implementation.

2) OUTPUT LAYERS FOR FDP
The proposed architecture for FDP is shown in Figure 5 (b).
We divide the output layer into 3 parallel layers. The first
two layers are dedicated to the real and imaginary part of
the FDP with dimension NT × NU,max. The third layer,
similar to the one for HBF, designs the antenna selection
vector (ω) described in Section II-A.1. Here again, we use

FIGURE 6. Training (left) and online (right) phases for efficient
beamforming (BF). The outputs of the DNN depend on the BF
structure (HBF, FDP).

the Gumbel-Sigmoid described in (19) to obtain the binary
variables from ω. Let π ′

n denotes the probability of activating
the n-th antenna and π ′

= [π ′

1, . . . , π
′
NT
]. Then, we have

�̄FD = diag(ω̄), where ω̄ = G(π ′).

B. TRAINING PHASE: SELF-SUPERVISED LEARNING
In the training phase, thanks to SSL, the data samples con-
sist of only imperfect channel matrices without the need
for labels. The imperfect channel (Ĥ) is modeled as in (14)
and it includes a coefficient β that determines the mag-
nitude of the estimation error and thus helps us study
the impact of the estimation error of the channel on the
DNN training.

Although the approach to train the DNN is sim-
ilar for E-HBF-Net and E-FDP-Net, there are differ-
ences in their hardware configurations. Therefore, we first
present the common aspects shared by both DNN mod-
els and then proceed to explain the parts specific to
each model.

The objective of the proposed solutions is to design the
beamforming configuration to not only maximize the SE but
also to minimize the EC while being adaptive to the number
of active users, i.e., when the number of active users is small,
it intelligently turns off part of the antennas since they will
no longer be needed. Consequently, it will reduce the EC.
To ensure good performance, the number of active users
is selected uniformly at random during training among the
supported values. The following SSL loss function is used to
train the DNN:

LBF = γLEC + LAAS, (20)

where the first term is related to EC and the second term
is related to both the SE and the active number of users
and is called the adaptive antenna selection (AAS) term.
The hyper-parameter γ is required to achieve proper training
convergence and should be tuned in the training phase. Each
term of the loss function is described in detail in the sequel.

EC term (LEC): This term is introduced to add a penalty to
the total loss function to reduce EC. It is given as:

LEC = P̄BF, (21)

where P̄BF is the total power consumption for either
HBF (P̄HBF) or FDP (P̄FDP) given in (18) as discussed in
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Section III, which depends on �̄ ∈ {�̄FD, �̄HB}. Thus, �̄BF
affects both the SE as well as the EC.

AAS term (LAAS): This term of the loss function LAAS is
given by:

LAAS =

(
R̄

NU,max
− Rd

)2

, (22)

where as discussed in Section II-B, parameter Rd denotes
the desired average SE value for each user, and R̄ is either
R̄HBF(Ā,W) for HBF or R̄FDP(U× �̄FD) for FDP. Thanks to
the AAS term, the SE is forced to approach Rd while parts of
the antennas can be turned off to reduce the EC (according
to the EC term LEC). As a result, by tuning the parameter
γ appropriately, the AAS term guarantees to consume mini-
mum power to satisfy an average desired SE (Rd). Note that
the models are trained with a fixed value of Rd. However,
assuming a limited number of Rd values are of interest, and
given the small model size, it is of course possible to train a
few different models to support different values.

1) EFFICIENT HYBRID BEAMFORMING NETWORK
(E-HBF-NET)
To design an efficient HBF structure, a programmable switch
is employed for each connection (NT × NRF) to find the
best matrix (�HB) that maximizes the EE. As shown in the
‘‘Training Phase’’ of Figure 6, the proposed DNN for HBF, E-
HBF-Net, is designing jointly the DP (W = ℜ[W]+ iℑ[W]),
the PSs (P̄q), and the connections matrix (�̄HB) by employing
the proposed ‘‘Gumbel Sigmoid’’ function as in (19).
Obtaining P̄HBF requires computing (18) and thus we first

need to know the power consumed by the power amplifiers.
Thus, based on (17), we would need the input and output
power of the PAs. The output power of the PAs 1, . . . ,NT
is given by

p̄TX =

NU∑
u=1

|Āwu|
2, (23)

where p̄TX = [P̄1TX, . . . , P̄
NT
TX]

T and Ā and W =

[w1, . . . ,wNU ] are the AP and DP outputs designed by the
proposed DNN. Due to the total power constraint assumed
at the BS in (13c), we should normalize the power such
∥ĀW∥

2
F =

∑NT
n=1

∑NU
u=1 |Āwu|

2
≤ PTX. To respect the

inequality of the power constraint, we introduce a new power
threshold P̄TX that is a function of the connection matrix as
follows:

P̄TX =

∑
∀m,n

[�̄HB]n,mPTX/(NRFNT). (24)

Therefore, the maximum transmitted power is limited to PTX
when all connections are established ([�̄HB]n,m = 1 ∀n,m),
while reducing the number of connections reduces the trans-
mit power. After power normalization, we can obtain the
input power of the PAs according to (15). However, for the

DNN loss function, we cannot have a sum over a dynamic set
as defined in (15). Therefore, we reformulate (15) as

p̄inPA,HBF =
PoutBB

ILCIL9 (ψ)IL8ILM
�̄HBdiag(�̄

T
HB1NT )

†1NRF ,

(25)

where p̄inPA,HBF = [P̄in,1PA,HBF, . . . , P̄
in,NT
PA,HBF] is the vec-

tor of input power of the APs, �̄HB is the output of
Gumbel-Sigmoid function for HBF, and 1N denotes the
all-one column vector of size N . According to (17) and (23)-
(25), we can obtain P̄DC,nPA,HBF.

To compute the power consumption of all activated RF
chains as in (18), we need to determine the number of
activated RF chains (i.e., NRF(�̄HB)). However, finding
NRF(�̄HB) again requires a summation over a dynamic set
and it is not appropriate for the loss function. As a con-
sequence, we use an alternative linear algebra formulation.
First, we compute the expectation over all antennas of each
RF chain as �̄

T
HB1NT/NT. Then, we find the expected number

of activated RF chains as follows:

N̄RF(�̄HB) = 1TNRF
�̄
T
HB1NT/NT. (26)

Finally, the total power consumption is given by

P̄HBF = N̄RF(�̄HB)(PL + PLO + PD(bD)) +

NT∑
n=1

P̄DC,nPA,HBF,

(27)

where P̄HBF is the power consumption terms that has been
employed in (21).

2) FULLY DIGITAL PRECODER (E-FDP-NET)
E-FDP-Net provides the precoder U = ℜ[U] + iℑ[U] and
the vector ω̄ for antenna selection, where �̄FD = diag(ω̄).
To evaluate the first term of the loss function detailed in (20),
the total power consumption of FDP (P̄FDP) is required. Com-
puting P̄FDP for E-FDP-Net is simpler than HBF because
in FDP each antenna is connected to one RF chain. Conse-
quently, the input power of each PA is simply PoutBB. Similar to
HBF, to respect the power constraint for FDP, ∥Ū∥

2
F ≤ PTX,

the output power should be a function of ω̄ = [ω̄1, . . . , ω̄NT ].
As a consequence, we denote the output power of the nth

antenna as

P̄nTX =

NU∑
u=1

|[U]n,u|2ω̄n . (28)

Therefore, the power consumed by the PAs is given by (17).
Finally, the power consumed by the active RF chains is also
easy to compute because the number of active RF chains is
given by N̄RF(�̄FD) =

∑NT
n=1 ω̄.
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Algorithm 1 Efficient HBF (E-HBF-Net)

1: Input: Ĥ
2: Output: ℜ[W], ℑ[W], Pq, and �̄HB
3: Hyper-Parameters: γ , Rd
4: for i in epochs do
5: FeedForward E-HBF-Net.train()
6: W = ℜ[W] + iℑ[W]
7: A = Pq ⊗ �̄HB,

8: P̄nTX, P̄
in,n
PA,HBF, and N̄RF(�̄HB) in (23)

in (25), and (26)
9: compute PHBF based on (27)

10: compute RHBF(Ā,W) based on (6)
11: Loss: LBF = γLEC + LAAS
12: compute gradient over layers
13: update weights and biases with AdamW

optimizer
14: Input: Ĥ
15: Output: W, Pq, and �HB
16: FeedForward E-HBF-Net.eval()
17: �HB = ⌊�̄HB⌉

18: W = ℜ[W] + iℑ[W]
19: A = Pq ⊗ �HB,

Training
Phase

Online
Phase

C. ONLINE PHASE: TRANSMITTING DATA
Once the DNN has been trained, the online phase can start
as shown in Figure 6 (right). In the online phase, the DNN
input is only given by the imperfect channelmatrices Ĥ. In the
online phase, like the training phase, the outputs of the DNN:
the AP (Pq) and the DP (W) in HBF and (U) in FDP can be
employed as is without any further processing, which is not
the case for the connection matrix �̄. Since the connection
matrix (�̄HB in HBF or ω̄ in FDP) should be binary, once it
is output by the DNN in the online phase, it requires binary
quantization. To do so, we can use the element-wise round
function (⌊·⌉) on each element of the connection matrix as
follows: �HB = ⌊�̄HB⌉ for HBF and ω = ⌊ω̄⌉, and �FD =

diag(ω) for FDP.
The output power of the nth antenna for E-HBF-Net is

given by the nth element of the power vector defined in (23)
while for E-FDP-Net it is given by (28). The two proposed
DNN solutions, E-HBF-Net and E-FDP-Net, are described
in Algorithm 1, Algorithm 2, respectively.

V. PERFORMANCE EVALUATION
In this section, the performance of the proposed DNN,
implemented using the PyTorch deep learning library,
is numerically evaluated. The scenario ‘‘O1-28 GHz’’
of the deepMIMO channel model [35] is employed to
generate the unlabeled dataset (the narrowband channel
coefficients hu for user u) for the training and testing.
In the deepMIMO dataset [35], realistic channel informa-
tion is generated by applying ray-tracing methods to a
three-dimensional model of an urban environment to capture

Algorithm 2 Efficient FDP (E-FDP-Net)

1: Input: Ĥ
2: Output: ℜ[U], ℑ[U], and �̄FD
3: Hyper-Parameters: γ , Rd
4: for i in epochs do
5: FeedForward E-FDP-Net.train()
6: �̄FD = diag(ω̄)
7: compute P̄nTX as (28)
8: Ū = ℜ[U] + iℑ[U]
9: compute PFDP based on (27)
10: compute RFDP(�̄FD × U) based on (3)
11: Loss: LBF = γLEC + LAAS
12: compute gradient over layers
13: update weights and biases with AdamW

optimizer
14: Input: Ĥ
15: Output: U, and �FD
16: FeedForward E-FDP-Net.eval()
17: �FD = diag(⌊ω̄⌉)
18: U = ℜ[U] + iℑ[U]

Training
Phase

Online
Phase

the geometry-based characteristics, such as the correlation
between the channels at different locations, and the depen-
dence on the materials of the various environmental elements,
among others.

The parameters to generate the deepMIMO dataset are
shown in Table 4, where the channel model parameters
active_user_first and active_user_last are
set to 1100 and 2200 respectively, resulting in 199281 distinct
user locations. The BS is equipped with NT = 64 anten-
nas and NRF = 8 RF chains, with PSs serving NU =

4 users randomly located in a dedicated area (S1 in Figure 7).
Scenario ‘‘O1’’ consists of several users’ locations being
randomly placed in two streets surrounded by buildings.
These two streets are orthogonal and intersect in the middle
of the considered area. The size of the DNN dataset is set
to 2 × 106 samples, with 85% of the samples used for the
training set and the remaining used to evaluate the perfor-
mance. We used ‘‘AdamW’’ as the DNN training optimizer.
The hyper-parameters used in our DNN model are listed
in Table 5. In addition, hyper-parameter τ known as the
Gumbel-Sigmoid temperature is set to 0.1 and 0.5 for E-HBF-
Net and E-FDP-Net, respectively, while the best value for
hyper-parameter γ , described in (20), depends on Rd, and
ranges from γ = 0.1 for Rd = 1, to γ = 0.005 for Rd = 8.
The training procedure required 200 epochs.

A. SPECTRAL EFFICIENCY AND POWER CONSUMPTION
ANALYSIS
We first verify the maximum SE that can be achieved by the
proposed DNNs, when they are trained without considering
their power consumption, and compare them with the base-
line solutions presented in Section II-A. This maximal SE is
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FIGURE 7. Illustration of the selected covered area from
deepMIMO channel model [35].

TABLE 4. Parameter selection for the deepMIMO channel model.

TABLE 5. Proposed DNN hyper-parameters.

TABLE 6. Simulation parameters for the energy model.

shown in Figure V-Awhen varying the noise power, where we
compared our proposed solutions with conventional non-DL
approaches FDP, WMMSE [52], MO-AltMin, PE-AltMin

FIGURE 8. Maximum spectral efficiency of E-FDP-Net and
E-HBF-Net, compared to other conventional approaches.
System parameters are set to: NU = 4, NRF = 8, NT = 64.

FIGURE 9. Power required to achieve a given SE for the various
transmitter configurations. Idle PBF is the power consumed by
the BF structure when PTX = 0. The parameters are set to:
NU = 4, NT = 64, NRF = 8, and σ2 = −130 dBm.

and DL-based solution FC-HBF-Net [32]. For WMMSE,
we assume ϵ = 10−5 and the maximum number of iterations
is 100. Taking into account channel attenuation, the average
signal-to-noise ratio (SNR) ranges from −7.8 dB to 22.2 dB.
It is worth noting that DAC quantization is exclusively con-
sidered within the energy model calculation. However, when
computing the SE, we operate under the assumption that there
is no quantization on DACs. To obtain the maximum SE,
we set γ = 0 so that the loss function for E-HBF-Net and E-
FDP-Net in (21) depends only on LAS and we set Rd = 15 to
have no constraint on SE. On the one hand, the proposed E-
FDP-Net gives a close-to-optimal performance. On the other
hand, E-HBF-Net, outperforms other conventional solutions
and is very close to E-FDP-Net performance. In the low-
noise regime, the SE of all solutions continues to increase.
However, both E-HBF-Net and E-FDP-Net outperform other
conventional non-DL solutions in high SNR regimes.

In Figure 9, we compare the power consumption of differ-
ent BF hardware configurations at a given SE. It is shown that
by adjusting Rd for E-FDP-Net and E-HBF-Net, different SE
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FIGURE 10. The connection matrix �̄FD = diag(ω̄) of E-FDP-Net
for one input sample, and for different values of
hyper-parameter Rd, where a blue square represents the value
1 and a white one represents the value 0. System parameters
are set to: NU = 4, NT = 64, and σ2 = −130 dBm.

and power consumption trade-offs can be obtained, where for
each proposed technique we set Rd in {1, 3, 5, 6, 8}. To cover
a range of SE values, we also adjust the transmitted power
for the conventional methods by setting PTX in {0.1, 1, 10}W.
We see that the FDP and the proposed E-FDP-Net with
Rd = 8 achieve the best SE. However, similar to WMMSE,
they also consume the most power because they require to
activate all NT RF chains. In this figure, we see that when
the desired SE parameter Rd is reduced, both E-FDP-Net and
E-HBF-Net are able to reduce their power consumption. For
example, when Rd is decreased from 8 to 5 bits/s/Hz/user,
the consumed power for both E-FDP-Net and E-HBF-Net is
reduced significantly (64% less for E-FDP-Net and 68% less
for E-HDF-Net). By decreasing Rd further, both the power
consumption and the SE continue to decrease. Furthermore,
we see that E-FDP-Net and E-HBF-Net achieve must better
energy efficiency than the baseline approaches. For example,
when Rd = 6, it can be seen that E-HBF-Net achieves similar
SE compared to FC-HBF solved with MO-AltMin, but with
almost 1.7 times less consumed power. Further, the baseline
solutions (near-optimal FDP and WMMSE) exhibit a power
floor, shown by red lines in the figure, that corresponds to
the power consumed by RF chains. When the transmit power
of near-optimal FDP and FC-HBF is decreased to PTX = 1W
andPTX = 0.1W, the SE is degraded due to the lower transmit
power. However, there is constant power consumption for
each beamforming technique due to the operation of RF
chains. On the contrary, E-FDP-Net and E-HBF-Net have the
ability to reduce their power consumption below these floors
by adaptively turning off their RF chains.

To illustrate how many antennas are activated by E-FDP-
Net, we plot in Figure 10 the connection matrix �̄FD for one
sample of the test set, for different values of Rd, where a blue
square represents the value 1 and a white square represents
the value 0. It can be seen that large values of Rd lead to more
active antennas (and thus more active RF chains), and thus to
a higher power consumption.

In Figure 11, we show the average value of �̄HB over
the inputs, for different values of Rd. When decreasing Rd,
the number of active antennas (non-zero columns) remains
constant, while the number of active RF chains (non-zero
rows) is reduced. This is because the power consumption
of an antenna depends on its transmit power, which can be

FIGURE 11. The average value of the connection matrix �̄HB of
E-HBF-Net given for different values of hyper-parameter Rd,
where the shade of each square represents the range of values
from 0 (light) to 1 (dark). System parameters are set to: NU = 4,
NT = 64, NRF = 8, and σ2 = −130 dBm.

FIGURE 12. EE versus SE for the proposed E-HBF-Net and
E-FDF-Net. The parameters are set to: NU = 4, NT = 64,
NRF = 8, and σ2 = −130 dBm.

adjusted, whereas RF chains consume a fixed amount of
power and must be turned off to save power. It is interesting
to see that with a lower value of Rd, the E-HBF-Net designs
the connection matrix such that a small number of RF chains
are activated that are connected to several antennas, which
helps to increase the spatial multiplexing gain and degrees of
freedom. Finally, we see that as Rd increases, more antennas
and more RF chains are activated, and thus more power is
used.

Figure 12 presents the EE versus SE comparison for the
proposed E-FDP-Net and E-HBF-Net, with varying adjust-
ments to Rd. Notably, as SE decreases, E-HBF-Net demon-
strates superior EE performance compared to E-FDP-Net.
This outcome is attributed to the behavior of E-HBF-Net at
lower SE values, where it intelligently deactivates RF chains
while keeping multiple antennas active. Conversely, in E-
FDP-Net, turning off an RF chain also turns off the associated
antenna. Consequently, E-HBF-Net excels in conserving
energy while simultaneously offering enhanced SE due to its
higher flexibility. Furthermore, as SE increases, E-HBF-Net
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FIGURE 13. The normalized number of active RF chains, EE, and
power consumption of the proposed E-FDP-Net (left sub-plots),
E-HBF-Net (right sub-plots) versus different numbers of users.
System parameters are set to: NRF = 8, NT = 64, and
σ2 = −130 dBm.

maintains its efficiency advantage over E-FDP-Net, although
the performance gap between the two approaches diminishes.

B. VARYING THE NUMBER OF USERS
To show the impact of antenna and RF chain selection when
varying the number of active users, we present Figure 13
for Rd = 3 and Rd = 5, where the left-side sub-plots
present E-FDP-Net and the right-side ones shows E-HBF-
Net. To improve the presentation we use the normalized
number of active RF chains (NRF(�)

NRF
), which in the case of

FDP is equal to the number of active antennas. In the proposed
solutions, we see that by increasing the number of active
users, the DNN not only activates more RF chains but also
increases the transmitted power to meet Rd. Moreover, when
Rd is small, the DNN requires a smaller number of active
RF chains while minimizing the transmitted power, thus
lowering power consumption and consequently increasing
EE. Figure 13 shows that the proposed DNN approaches are
adaptive to the number of active users in the network. That is,
depending on the scenario, the DNN designs the beamform-
ing structures to adapt to the varying number of users in each
scenario. For instance, in a high-traffic scenario, when the
number of active users is large, the DNN will activate more
antennas and RF chains to meet the average SE. On the other
hand, in a low-traffic scenario, when the number of users
is low, the DNN has no need to activate a large number of
antennas and RF chains, and thus can significantly increase
its EE. Finally, we notice that by controlling the value of Rd,

FIGURE 14. The SE comparison of the different BF solutions with
different values of β. System parameters are set to: NU = 4,
NRF = 8, NT = 64, γ = 0, σ2 = −130 dBm.

which depends on the application and the objective of the
service provider, the power consumption can be adjusted.

C. TRAINING WITH IMPERFECT CSI
Unlike other studies that assume perfect CSI for DNN train-
ing, in this work, we employed imperfect CSI not only for
the input of the DNN but also for the computation of the
loss function. The robustness of the proposedmethods against
imperfect CSI is evaluated and compared to other non-DL
methods in Figure 14. Here we train the DNN with different
β in {0, 0.1, 0.2, 0.3, 0.4, 0.5}. It is clear that the SE perfor-
mance decreases as the value of β increases. In particular,
when β increases from 0 to 0.5, the SE performance for
near-optimal FDP degrades by 38%. For PE-AltMin, the
degradation is around 25%, whereas it is around 27%, for
MO-AltMin. The lowest degradation in terms of SE perfor-
mance is achieved for E-HBF-Net and E-FDP-Net, (e.g., the
degradation is around 9% and 11%, respectively). Therefore,
the proposed methods are more robust against estimation
errors. Moreover, the red lines in Figure 14 shows the ideal
case of perfect CSI when β = 0. It is interesting to see that
for a small β (i.e. 0.1) the SE performance is not degraded.
In fact, a slight improvement can be observed, which can be
attributed to the fact that training with imperfect CSI can act
as regularization, known as noise injection in the machine
learning literature and thus can improve the generalization
of the DNN in the online phase [53], [54]. It is also worth
mentioning that while the basic model for noisy CSI provides
initial insights, further research is necessary to explore the
impacts of more complex and realistic channel estimation
errors on the training and performance of deep neural net-
works for mMIMO systems.

In Figure 15, we present the convergence of the training of
the proposed E-FDP-Net in terms of SE, power consumption,
and EE, when Rd = 3 and NU = 4. We see in the top subplot
that the DNN learns quickly to design the connection matrix
and the FDP to obtain an SE of NURd = 12, i.e., after few
epochs, the achieved SE for each user is around Rd. Then,
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FIGURE 15. Training steps of E-FDP-Net. The parameters are set
to: NU = 4, NRF = 8, NT = 64, and Rd = 3.

while the SE target is respected, the DNN learns to gradually
reduce power consumption by turning off some RF chains
until it achieves the minimum power consumption as shown
in the middle subplot.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
To evaluate the computational complexity of the proposed
DNNs, we derive the analytical expression of the num-
ber of real multiplications (RM) and compare it with other
approaches. We assume that one complex multiplication
(CM) corresponds to 4 RMs and that the 1 complex division
corresponds to 8 RMs (assuming that the real division of
1 is equal to 1 RM). Only the matrix multiplications and
inversions are taken into consideration, the other operations
are considered negligible. A CM between a matrix of size
N×P and amatrix of sizeP×M requiresNMPCMs. To invert
a square matrix of size N , around N 3/3 CMs are required
if the Gaussian elimination algorithm is employed. Finally,
we consider that the eigenvalues of a square matrix of size N
are obtained using the Cholesky decomposition [55], which
requires approximately 4N 3 RMs.

O-FDP requires 4(2NU − 1)(2NUN 2
T +N 2

UNT +
1
3N

3
T) RMs

as described in [23]. In the specified scenario, we replicate the
implementation of SoTA algorithms. Our observations reveal
that the PE-AltMin algorithm typically achieves convergence
within an average of ℓPE = 15 iterations. Given that the com-
putation of the singular-value decomposition of a p×qmatrix
necessitates approximately 4p2q + 22q3 resource modules
(RMs), we can formulate the total number of RMs required
for PE-AltMin as ℓPE(8NRFNU(NT + NU) + 22N 3

RF). MO-
AltMin has a much higher complexity than PE-AltMin [9].
MO-AltMin is composed of a main loop that computes the
DP, and of an inner loop applying the ‘‘Conjugate Gradient’’
algorithm to find the HBF. In the main loop, computing
the DP requires 4NTNUNRF RMs, while in the inner loop,
the Kronecker product of a NRF × NT matrix with a NU ×

TABLE 7. Computational complexity comparison.

NT matrix is computed, which requires 4N 2
TNUNRF RMs.

Based on the defined scenario the outer loop is repeated
ℓMO = 2 times while the inner loop is repeated ℓ′ =

30 times, the total number of RMs used by MO-AltMin
is 4ℓMONTNUNRF

(
1 + ℓ′NT

)
. To design the HBF, both

PE-AltMin and MO-AltMin require designing the FDP as
discussed in (10), thus the complexity of obtaining the FDP
should be added to the complexity of PE-AltMin and MO-
AltMin.

On the other hand, to compute the computational com-
plexity of the DNN approaches, we need to compute the
number of parameters of the DNN architectures. Both DNN
architectures, E-HBF-Net and E-FDP-Net, have the same
DNNcore but their output layers are different due to different
output dimensions. The number of RMs in the DNNcore is
calculated for each layer separately, then summed up. The
width of the l th FC and CL are respectively denoted as fl and
cl . The number of multiplications required for DNNcore is
M(DNNcore) = (2c1+c1c2+c2c3+c3f1/κ2)NTNU,maxκ

2
+

f1f2, where κ is the kernel size i.e. κ = 3 [23]. Consider-
ing that for E-HBF-Net there are 4 output layers, one layer
for the AP, two layers for the DP, and one layer for the
connection matrix, then the total number of multiplications
is M(DNNcore) + f2(NTNRF + 2NU,maxNRF + NTNRF).
Likewise, for E-FDP-Net, the total number of multiplications
is M(DNNcore) + f2(2NU,maxNT + NT). Examples of the
numerical values of these analytical expressions are shown
in Table 7. It can be seen that for HBF transmitters, E-HBF-
Net reduces the complexity by 38% compared to the least
complex conventional approach (PE-AltMin), while for FDP
transmitters, near-optimal FDP is 1.5 times more complex
than E-FDP-Net.

VI. CONCLUSION
In this paper, we studied the problem of antenna selection and
beamforming design in a massive multiple-input multiple-
output (mMIMO) system with the objective of maximizing
energy efficiency (EE). First, we derived an accurate energy
model for the mMIMO system. Our proposed energy model
takes into account the transmit power as well as the power
consumed by the hardware by considering the insertion loss
and the direct power consumption of different components
such as the combiners and the power amplifiers. Next, based
on our energy model, we designed deep SSL approaches to
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intelligently and adaptively select the BF structures and the
transmitting antennas. Specifically, we proposed two deep
neural networks models, called E-HBF-Net and E-FDP-Net,
for hybrid BF and for fully digital precoding, respectively.
Both DNNs optimize the EE of the mMIMO system by
intelligently selecting the transmitting antennas and choosing
the precoding matrices for HBF and FDP, which allows them
to achieve significantly better EE than conventional solutions.
Simulation results confirm that the proposed DNNs can adapt
to the number of active users and that they provide different
trade-offs between SE and EC that can be controlled by tun-
ing a hyper-parameter. Furthermore, we show that the DNN
models can be trained exclusively using imperfect channel
information (CSI), i.e., the imperfect CSI was used as input
to our DNN models as well as to compute the loss function
during training.
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