<  Retour au portail Polytechnique Montréal

Solid–fluid force modeling: insights from comparing a reduced order model for a pair of particles with resolved CFD-DEM

Lucka Barbeau, Stéphane Étienne, Cédric Béguin et Bruno Blais

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

Solid–fluid force models are essential to efficiently model multiple industrial apparatuses such as fluidized beds, spouted beds, and slurry transport. They are generally built using strong hypotheses (e.g. fully developed flow and no relative motion between particles) that affect their accuracy. We study the effect of these hypotheses on particle dynamics using the sedimentation of a pair of particles. We develop new induced drag, lift and torque models for pairs of particles based on an artificial neural network (ANN) regression. The fluid force model covers a range of Reynolds numbers of 0.1 to 100 and particle centroid distance of up to 9 particle diameters. The ANN model uses 3475 computational fluid dynamics (CFD) simulation results as the training data set. Using this fluid force model, we develop a reduced-order model (ROM), which includes the virtual mass force, the Meshchersky force, the history force, the lubrication force, and the Magnus force. Using the results of a resolved computational fluid dynamics coupled with a discrete element method (CFD-DEM) model as a reference, we analyze the discrepancies between the ROM and CFD-DEM results for a series of sedimentation cases that cover particle Archimedes number from 20 to 2930 and particle to fluid density ratio of 1.5 to 1000. The errors primarily stem from particle history interactions that are not accounted for by the fully developed flow hypothesis. The importance of this effect on the dynamic of two particles is isolated and it is shown that it is more pronounced in cases with a lower particle-to-fluid density ratio (such as solid–liquid cases). This work underscores the need for more research on these effects to increase the precision of solid–fluid force models for small particle-to-fluid density ratios (1.5).

Mots clés

pair-wise particle interaction; reduced order modeling; immersed boundary; Navier–Stokes incompressible flow; computational fluid dynamics with the discrete element method (CFD-DEM)

Renseignements supplémentaires: CHAOS Laboratory, Department of Chemical Engineering, École Polytechique de Montréal ;
The implementation of the ROM is performed in Python. The scripts and the ANN force model files are available on a public repository : https://github.com/chaos-polymtl/particle_pair_sedimentation_dynamic
Sujet(s): 1800 Génie chimique > 1800 Génie chimique
Département: Département de génie chimique
Centre de recherche: Autre
Organismes subventionnaires: NSERC / CRSNG Discovery Grant, NSERC CREATE Simulation-Based Engineering Science (SBES) scholarship
Numéro de subvention: RGPIN-2020-04510
URL de PolyPublie: https://publications.polymtl.ca/58717/
Titre de la revue: International Journal of Multiphase Flow (vol. 178)
Maison d'édition: Elsevier
DOI: 10.1016/j.ijmultiphaseflow.2024.104882
URL officielle: https://doi.org/10.1016/j.ijmultiphaseflow.2024.10...
Date du dépôt: 17 juil. 2024 10:06
Dernière modification: 19 juil. 2024 03:37
Citer en APA 7: Barbeau, L., Étienne, S., Béguin, C., & Blais, B. (2024). Solid–fluid force modeling: insights from comparing a reduced order model for a pair of particles with resolved CFD-DEM. International Journal of Multiphase Flow, 178, 104882 (23 pages). https://doi.org/10.1016/j.ijmultiphaseflow.2024.104882

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document