<  Retour au portail Polytechnique Montréal

Gaining insight into crew rostering instances through ML-based sequential assignment

Philippe Racette, François Soumis, Frédéric Quesnel et Andrea Lodi

Article de revue (2024)

[img] Accès restreint: Personnel autorisé jusqu'au 25 juin 2025
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Demander document
Afficher le résumé
Cacher le résumé

Abstract

Crew scheduling is typically performed in two stages. First, solving the crew pairing problem generates sequences of flights called pairings. Then, the pairings are assigned to crew members to provide each person with a full schedule. A common way to do this is to solve an optimization problem called the crew rostering problem (CRP). However, before solving the CRP, the problem instance must be parameterized appropriately while taking different factors such as preassigned days off, crew training, sick leave, reserve duty, or unusual events into account. In this paper, we present a new method for the parameterization of CRP instances for pilots by scheduling planners. A machine learning-based sequential assignment procedure (seqAsg) whose arc weights are computed using a policy over state–action pairs for pilots is implemented to generate very fast solutions. We establish a relationship between the quality of the solutions generated by seqAsg and that of solutions produced by a state-of-the-art solver. Based on those results, we formulate recommendations for instance parameterization. Given that the seqAsg procedure takes only a few seconds to run, this allows scheduling workers to reparameterize crew rostering instances many times over the course of the planning process as needed.

Mots clés

crew rostering; crew scheduling; discrete optimization; evolutionary algorithm; machine learning; reinforcement learning

Sujet(s): 1600 Génie industriel > 1600 Génie industriel
1600 Génie industriel > 1603 Logistique
1600 Génie industriel > 1605 Génie des facteurs humains
2950 Mathématiques appliquées > 2950 Mathématiques appliquées
Département: Département de mathématiques et de génie industriel
Centre de recherche: GERAD - Groupe d'études et de recherche en analyse des décisions
Autre
Organismes subventionnaires: CRSNG/NSERC, IBS
Numéro de subvention: CRDPJ-477127-14
URL de PolyPublie: https://publications.polymtl.ca/58706/
Titre de la revue: Top
Maison d'édition: Springer
DOI: 10.1007/s11750-024-00678-8
URL officielle: https://doi.org/10.1007/s11750-024-00678-8
Date du dépôt: 27 juin 2024 12:20
Dernière modification: 30 sept. 2024 09:52
Citer en APA 7: Racette, P., Soumis, F., Quesnel, F., & Lodi, A. (2024). Gaining insight into crew rostering instances through ML-based sequential assignment. Top, 42 pages. https://doi.org/10.1007/s11750-024-00678-8

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document