Katherine Ember, Frédérick Dallaire, Arthur Plante, Guillaume Sheehy, Marie-Christine Guiot, Rajeev Agarwal, Rajeev Yadav, Alice Douet, Juliette Selb, Jean Philippe Tremblay, Alex Dupuis, Eric Marple, Kirk Urmey, Caroline Rizea, Armand Harb, Lily McCarthy, Alexander Schupper, Melissa Umphlett, Nadejda Tsankova, Frédéric Leblond, Constantinos Hadjipanayis et Kevin Petrecca
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (4MB) |
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (1MB) |
Abstract
Safe and effective brain tumor surgery aims to remove tumor tissue, not non-tumoral brain. This is a challenge since tumor cells are often not visually distinguishable from peritumoral brain during surgery. To address this, we conducted a multicenter study testing whether the Sentry System could distinguish the three most common types of brain tumors from brain tissue in a label-free manner. The Sentry System is a new real time, in situ brain tumor detection device that merges Raman spectroscopy with machine learning tissue classifiers. Nine hundred and seventy-six in situ spectroscopy measurements and colocalized tissue specimens were acquired from 67 patients undergoing surgery for glioblastoma, brain metastases, or meningioma to assess tumor classification. The device achieved diagnostic accuracies of 91% for glioblastoma, 97% for brain metastases, and 96% for meningiomas. These data show that the Sentry System discriminated tumor containing tissue from non-tumoral brain in real time and prior to resection.
Mots clés
biophysics; cancer; optics and photonics; optical spectroscopy; translational research
Sujet(s): |
1900 Génie biomédical > 1900 Génie biomédical 1900 Génie biomédical > 1901 Technologie biomédicale 3100 Physique > 3100 Physique |
---|---|
Département: | Département de génie physique |
Organismes subventionnaires: | NSERC / CRSNG, TransMedTech, Fonds de recherche du Québec - Nature et technologies (FRQNT) |
URL de PolyPublie: | https://publications.polymtl.ca/58635/ |
Titre de la revue: | Scientific Reports (vol. 14) |
Maison d'édition: | Springer Nature |
DOI: | 10.1038/s41598-024-62543-9 |
URL officielle: | https://doi.org/10.1038/s41598-024-62543-9 |
Date du dépôt: | 26 juin 2024 12:51 |
Dernière modification: | 01 nov. 2024 20:24 |
Citer en APA 7: | Ember, K., Dallaire, F., Plante, A., Sheehy, G., Guiot, M.-C., Agarwal, R., Yadav, R., Douet, A., Selb, J., Tremblay, J. P., Dupuis, A., Marple, E., Urmey, K., Rizea, C., Harb, A., McCarthy, L., Schupper, A., Umphlett, M., Tsankova, N., ... Petrecca, K. (2024). In situ brain tumor detection using a Raman spectroscopy system — results of a multicenter study. Scientific Reports, 14, 14 (12 pages). https://doi.org/10.1038/s41598-024-62543-9 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions