Charles Champagne Cossette, Mohammed Ayman Shalaby, David Saussié et James Richard Forbes
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (2MB) |
Abstract
This paper addresses the problem of decentralized, collaborative state estimation in robotic teams. In particular, this paper considers problems where individual robots estimate similar physical quantities, such as each other’s position relative to themselves. The use of pseudomeasurements is introduced as a means of modeling such relationships between robots’ state estimates and is shown to be a tractable way to approach the decentralized state estimation problem. Moreover, this formulation easily leads to a general-purpose observability test that simultaneously accounts for measurements that robots collect from their own sensors, as well as the communication structure within the team. Finally, input preintegration is proposed as a communication-efficient way of sharing odometry information between robots, and the entire theory is appropriate for both vector-space and Lie-group state definitions. To overcome the need for communicating preintegrated covariance information, a deep autoencoder is proposed that reconstructs the covariance information from the inputs, hence further reducing the communication requirements. The proposed framework is evaluated on three different simulated problems, and one experiment involving three quadcopters.
Mots clés
relative position estimation; collaborative localization; Lie groups; multi-robot systems; state estimation; preintegration
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2600 Robotique > 2600 Robotique |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | NSERC / CRSNG Alliance Grant Program, NSERC / CRSNG Discovery Grant Program, Canada Foundation for Innovation - John R. Evans Leaders Fund, Fonds de recherche du Québec – Nature et technologies |
URL de PolyPublie: | https://publications.polymtl.ca/58207/ |
Titre de la revue: | The international journal of robotics research |
Maison d'édition: | SAGE Publishing |
DOI: | 10.1177/02783649241230993 |
URL officielle: | https://doi.org/10.1177/02783649241230993 |
Date du dépôt: | 11 juin 2024 09:46 |
Dernière modification: | 26 sept. 2024 16:22 |
Citer en APA 7: | Cossette, C. C., Shalaby, M. A., Saussié, D., & Forbes, J. R. (2024). Decentralized state estimation: An approach using pseudomeasurements and preintegration. The international journal of robotics research, 21 pages. https://doi.org/10.1177/02783649241230993 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions