
Titre:
Title:

Decentralized state estimation: An approach using 
pseudomeasurements and preintegration

Auteurs:
Authors:

Charles Champagne Cossette, Mohammed Ayman Shalaby, David 
Saussié, & James Richard Forbes 

Date: 2024

Type: Article de revue / Article

Référence:
Citation:

Cossette, C. C., Shalaby, M. A., Saussié, D., & Forbes, J. R. (2024). Decentralized 
state estimation: An approach using pseudomeasurements and preintegration. 
The international journal of robotics research, 21 pages. 
https://doi.org/10.1177/02783649241230993

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/58207/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

CC BY 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

The international journal of robotics research 

Maison d’édition:
Publisher:

SAGE Publishing

URL officiel:
Official URL:

https://doi.org/10.1177/02783649241230993

Mention légale:
Legal notice:

Creative Commons Licence (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1177/02783649241230993
https://publications.polymtl.ca/58207/
https://doi.org/10.1177/02783649241230993


Article

The International Journal of
Robotics Research
2024, Vol. 0(0) 1–21
© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649241230993
journals.sagepub.com/home/ijr

Decentralized state estimation: An approach
using pseudomeasurements and preintegration

Charles Champagne Cossette1, Mohammed Ayman Shalaby1,
David Saussié2 and James Richard Forbes1

Abstract
This paper addresses the problem of decentralized, collaborative state estimation in robotic teams. In particular, this paper
considers problems where individual robots estimate similar physical quantities, such as each other’s position relative to
themselves. The use of pseudomeasurements is introduced as a means of modeling such relationships between robots’state
estimates and is shown to be a tractable way to approach the decentralized state estimation problem. Moreover, this
formulation easily leads to a general-purpose observability test that simultaneously accounts for measurements that robots
collect from their own sensors, as well as the communication structure within the team. Finally, input preintegration is
proposed as a communication-efficient way of sharing odometry information between robots, and the entire theory is
appropriate for both vector-space and Lie-group state definitions. To overcome the need for communicating preintegrated
covariance information, a deep autoencoder is proposed that reconstructs the covariance information from the inputs,
hence further reducing the communication requirements. The proposed framework is evaluated on three different simulated
problems, and one experiment involving three quadcopters.

Keywords
Relative position estimation, collaborative localization, Lie groups, multi-robot systems, state estimation, preintegration

1. Introduction

Decentralized state estimation is a fundamental requirement
for real-world multi-robot deployments. Whether the task is
collaborative mapping, relative localization, or collabora-
tive dead-reckoning, the multi-robot estimation problem
seeks to estimate the state of each robot given all the
measurements that each robot obtains locally. This problem
is made difficult by the fact that not all robots can com-
municate with each other and, furthermore, that high-
frequency sensor measurements would require substantial
communication bandwidth to simply share across the team.
A robot might even have insufficient sensors to observe
their own state, and hence is dependent on its neighbor’s
sensors to have a stable estimate. Hypothetically, an esti-
mator that could somehow collect all these sensor mea-
surements on each robot, and fuse them all to jointly
estimate the states of every robot in one large system, would
have the lowest possible estimation error variance. This is
called the centralized estimator, but is often infeasible to
implement in practice.

A common approach is for robots to share their current
state and associated covariance rather than of a history of
measurement values (Julier and Uhlmann (1997); Julier
(2001); Carrillo-Arce et al. (2013)). This approach has
the benefit of simplicity, low communication cost, and fixed
message size, but suffers from a well-known issue of not

being able to compute cross-correlations between the ro-
bots’ state estimates (Shalaby et al. (2021b)). Furthermore,
in certain problems, robots may be estimating the same
physical quantities. As an example, consider two robots
estimating each other’s position, in addition to their own
positions, as shown in Figure 1 (left). Their state vectors are
both robots’ positions, and therefore, both seek to estimate
the same physical quantities, a situation referred to here as
full state overlap. When robot states have similar, if not
identical state definitions, it is straightforward to compute
the error between their state estimates using simple sub-
traction. However, for more complicated problems, espe-
cially those with state definitions belonging to arbitrary Lie
groups, a generalized measure of error between different
robots’ state estimates must be introduced.
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Bld., Montréal, QC H3A 0C3, Canada.
Email: charles.cossette@mail.mcgill.ca

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649241230993
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-9380-8361
https://orcid.org/0000-0002-1987-9268
mailto:charles.cossette@mail.mcgill.ca
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649241230993&domain=pdf&date_stamp=2024-04-03


As a concrete example, which is featured experimentally
in this paper, consider the case where quadcopters each
possess GPS sensors, IMUs, and inter-robot range mea-
surements using ultra-wideband radio. Suppose one
quadcopter loses GPS functionality due to traveling under a
bridge or a sensor fault, thus losing absolute positioning
information. The challenge is to design an algorithm where
this faulty robot maintains accurate absolute positioning
estimation by appropriately sharing information with its
neighbors.

1.1. Contributions

This paper has three main contributions:

1. a framework for decentralized state estimation that uses
pseudomeasurements to allow for generic nonlinear
relationships between robot states;

2. a preintegration-based method for constant-time,
constant-memory, and constant-communication od-
ometry sharing;

3. a theory compatible with Lie-group state definitions,
including the familiar vector space.

The pseudomeasurements are shown to be a tractable and
effective way to model any generic nonlinear relationship
between robot state definitions, including full or partial state
overlap as special cases. For example, a nonlinear state
relationship is present when robots estimate each other’s
poses in their own body frames. A pseudomeasurement is
introduced for each edge in the communication graph, and
the proposed framework also naturally leads to an ob-
servability test that takes into account both the local
measurements obtained by each robot and the communi-
cation structure between them. Usage of pseudomeasure-
ments requires robots to communicate their states and
corresponding covariances. Furthermore, the common
states between robots must be at the same time step, which
potentially requires odometry information to also be shared,
so that states can be propagated forward to a common time.

The proposed use of preintegration allows sharing od-
ometry information over an arbitrary duration of time, in a

lossless matter. The naive alternative is for robots to share a
history of odometry measurements since the last time they
communicated, which has processing, memory, and com-
munication requirements that grow linearly with the time
interval between communications. Preintegration provides a
constant-time, constant-memory, and constant-
communication alternative that is algebraically identical
to simply sharing the input measurements themselves. This
makes preintegration a natural choice for multi-robot esti-
mation problems. Moreover, preintegration preserves sta-
tistical independence assumptions that typical Kalman
filtering prediction steps rely on. Preintegration is best
known from the visual-inertial odometry literature (Lupton
and Sukkarieh (2012); Forster et al. (2017)), where the same
concept, adapted for relative pose estimation is introduced
by Shalaby et al. (2023). This paper generalizes the multi-
robot-preintegration concept to other common process
models in robotics, presents a solution for simultaneous
input bias estimation, and also further proposes a deep
autoencoder to compress the associated covariance
information.

Finally, the proposed solution is general to any state
definition, process model, and measurement model subject
to typical Gaussian noise assumptions. The complexity of
the proposed estimation algorithm is identical to a standard
extended Kalman filter, and the communicated messages are
lightweight and of fixed length. In the experimental test
demonstrated in this paper, each robot transmits information
at a rate of only 53 kB/s.

This paper does not focus on the treatment of cross-
correlations, and hence employs the simple, well-known
covariance intersection (CI) (Julier and Uhlmann (1997);
Julier (2001)) method. This allows for an arbitrary com-
munication graph within the robot team, while remaining
lightweight and avoiding cumbersome bookkeeping. The
main drawback is that CI is proven to yield suboptimal
estimation. However, in practice, the performance can re-
main adequate, and sometimes very comparable to cen-
tralized estimation (Shalaby et al. (2021b); Julier (2001)), as
shown here from simulated and experimental results.

The remainder of this paper is as follows. Related work is
discussed in Section 2 and mathematical preliminaries and

Figure 1. Three examples of decentralized estimation problems within the scope of this paper. Left:A toy problem with 1D robots, each
estimating both of their positions. Middle: A problem with an incomplete communication graph. Robots observe landmarks, have
range measurements to each other, and estimate their own and neighbor absolute poses. Right: A more complicated experimentally
tested problem, where robots equipped with ultra-wideband radios estimate both their own absolute pose and relative poses of neighbors,
in addition to IMU biases.
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notation are shown in Section 3. The paper then starts with a
simplified “toy” problem showcasing the proposed method
in Section 4, and the theory is generalized in Section 5.
Preintegration sharing is presented in Section 6. Finally,
Section 7 contains an application to a ground robot simu-
lation and Section 8 applies the method to a more com-
plicated experimental quadcopter problem.

2. Related work

There are many sub-problems associated with the overall
decentralized state estimation problem. Even if communi-
cation links between robots are assumed to be lossless and
have infinite bandwidth, there is still the issue of propa-
gating information over general, incomplete communica-
tion graphs. For two robots, it is straightforward to compute
centralized-equivalent estimators on each robot as done by
Grime and Durrant-Whyte (1994), which use information
filters to accumulate the information from a series of
measurements, and then communicate this quantity. Grime
and Durrant-Whyte (1994) also derived centralized-
equivalent solutions for fully connected graphs, as well
as tree-shaped graphs. However, they show that for generic
graphs, it is impossible to obtain a centralized-equivalent
estimate with only neighboring knowledge, and that more
knowledge of the graph topology is required.

Leung et al. (2010) present a general centralized-
equivalent algorithm for arbitrary time-varying graphs,
and is formulated over distributions directly, hence allowing
inference using any algorithm such as an extended or sigma-
point Kalman filter. Robots must still share raw measure-
ments with each other, therefore requiring substantial
bookkeeping. The approach is extended to the SLAM
problem by Leung et al. (2012). Roumeliotis and Bekey
(2002) decompose the centralized Kalman filter equations
using a singular value decomposition to generate inde-
pendent equations that each robot can compute. Provided
that robots have broadcasting ability, and obtain direct pose
measurements of their neighbors, a centralized-equivalent
solution can be obtained. The consensus Kalman filter
(Olfati-Saber and Murray (2004); Olfati-Saber (2005)) aims
to asymptotically send the state of n arbitrary nodes to a
common value, which is effectively a problemwith full state
overlap. Battistelli et al. (2015) proposes alternate con-
sensus approaches such as “consensus on information” or
“consensus on measurements.” However, the problem does
not consider the fact that robots collect their own, separate
odometry measurements that are not necessarily available to
neighboring robots.

As previously mentioned, one of the simplest solutions
to the decentralized estimation problem is to use covariance
intersection (Julier and Uhlmann (1997); Julier (2001)). CI
conservatively assumes maximum correlation between ro-
bot estimates. Although the performance is theoretically
suboptimal, the implementation is extremely simple, and
imposes no constraints whatsoever on the communication
frequency or graph topology. Carrillo-Arce et al. (2013)

apply CI to a collaborative localization problem, where each
robot estimates their own absolute state given direct relative
pose measurements to other robots. Meanwhile, Arambel et al.
(2001) present a decentralized state estimation algorithm for
multiple spacecraft, where each spacecraft estimates the full
state of all vehicles and then utilizes CI to fuse the neighbors’
full state. Recently, split-CI has been introduced to separate
states into groups of correlated and independent substates (Li
and Nashashibi (2013)), while Li and Yang (2021) exploit CI
for the fusion of poses on Lie groups.

When employing CI, a user-defined weighting parameter
has to be chosen, which affects the level of inflation of the
block-diagonal components of the covariance matrix. Zhu
and Kia (2019) formulate an optimization problem where
the logarithm of the determinant of the posterior covariance
matrix is minimized as a function of the CI weighting
parameter, alongside an alternative linear-matrix-inequality
approach that estimates the most conservative posterior
covariance matrix. Meanwhile, Luft et al. (2018) use an
EKF-like filter for decentralized estimation where cross-
correlations are also explicitly tracked for both the pre-
diction step and the fusion of local measurements. When
relative measurements are encountered, an improved ap-
proximation to the joint covariance matrix is developed, which
outperforms CI. The approach of Luft et al. (2018) assumes
that process model inputs between robots are uncorrelated,
which is not applicable in some of the problems in this paper.
Thework by Jung et al. (2020) builds off of Luft et al. (2018) to
solve a full 3D collaborative state estimation problem where
each robot has a camera and an IMU.

Another approach using scattering theory has recently
been presented for two robots (Allak et al. (2019; 2022)),
with the objective of reducing the communication cost
associated with high-rate sensor measurements. Also
making reference to the IMU preintegration technique
(Lupton and Sukkarieh (2012); Forster et al. (2017)), co-
variance pre-computations are derived by Allak et al. (2019)
and later extended to also include the mean (Allak et al.
(2022)). It is shown that by sharing pre-computed matrices
with twice the size as the state vector, a centralized-
equivalent state estimate can be directly obtained with no
measurement reprocessing. However, the generalization to
more robots does not seem straightforward.

A variety of optimization-based approaches can be seen
in the literature, especially when applied to multi-robot
simultaneous localization and mapping (SLAM). Tian
et al. (2022) have released Kimera-Multi, which uses a
distributed pose-graph optimization algorithm to perform
metric-semantic SLAM. Lajoie and Beltrame (2023)
propose Swarm-SLAM, which performs multi-robot
SLAM with an emphasis on using sparsity to minimize
the number of data exchanges. However, these distributed
SLAM methods are appropriate for situations where each
robot has sufficiently rich sensor information via cameras
or LIDARs and can perform individual SLAM in the first
place. The method of this paper does not impose such a
requirement.
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3. Preliminaries

This paper will address problems where an individual ro-
bot’s process model f(�) and measurement model g(�) are
modeled in the standard form of

X ik ¼ fðX ik�1
, uik�1

,wik�1
Þ,

yik ¼ gðX ikÞ þ vik ,
wik�1 ∼N �0,Qik�1

�
,

vik ∼Nð0,RikÞ,
(1)

for Robot i, where uik 2R
nu is the process input at time step

k, yik 2R
ny are the measurements, and X ik 2G denotes the

robot state belonging to any Lie group G. As a notational
convenience, the shorthand X i : j ¼ fX i … X jg will refer
to a collection of arbitrary objects with indices in the range
[i, j].

3.1. Lie groups

A Lie group G is a smooth manifold whose elements,
given a group operation ◦: G × G → G, satisfy the group
axioms (Solà et al. (2018)). The application of this op-
eration to two arbitrary group elements X ,Y 2G is
written as X+Y 2G. For any G, there exists an associated
Lie algebra g, a vector space identifiable with elements of
R

m, where m is referred to as the degrees of freedom of G.
Lie algebra elements are related to group elements
through the exponential and logarithmic maps, denoted
exp : g→G and log :G→ g. The “vee” and “wedge”
operators are denoted ð�Þ⋁ : g→R

m and ð�Þ⋀ :Rm → g,
which can be used to associate Lie algebra elements with
vectors. Composing these operators, group elements can
be associated with vectors using

X ¼ expðξ⋀ÞbExpðξÞ, ξ ¼ logðXÞ⋁bLogðXÞ,
where X 2G, ξ 2R

m, and the shorthand notation
Exp :Rm →G and Log :G→R

m has been defined. Fol-
lowing Solà et al. (2018), the adjoint matrix representation
of an element X 2G is denoted Ad :G→R

m×m and defined
such that

AdðXÞξ ¼ �Xξ⋀X�1
�⋁

:

The most common Lie groups appearing in robotics are
SO(n), representing rotations in n-dimensional space, SE(n),
representing poses, and SE2(3) representing “extended”
poses that also contain velocity information. In these cases,
the elements X are invertible matrices and the group op-
eration ◦ is regular matrix multiplication.

3.1.1. Å and . operators. Estimation theory for vector-
space states and Lie groups can be elegantly aggregated
into a single mathematical treatment by defining
generalized “addition” Å :G ×Rm →G and “subtraction”
. :G ×G→R

m operators, whose precise definitions will
depend on the problem at hand. For example, possible
implementations include

X Å δx ¼ X+ExpðδxÞ ðLie group rightÞ,
X Å δx ¼ ExpðδxÞ+X ðLie group leftÞ,
x Å δx ¼ xþ δx ðvector spaceÞ,

for addition and, correspondingly,

X .Y ¼ Log
�Y�1+X� ðLie group rightÞ,

X .Y ¼ Log
�X+Y�1

� ðLie group leftÞ,
x. y ¼ x� y ðvector spaceÞ,

for subtraction. This abstraction is natural since a vector
space technically qualifies as a Lie group with regular
addition + as the group operation.

3.1.2. Gaussian distributions on Lie groups. As an ex-
ample use of this abstraction, consider defining a nor-
mally distributed Lie group element with mean X and
covariance Σ, as done by Barfoot and Furgale (2014),
with

X ¼ X+ExpðδxÞ, δx∼Nð0,ΣÞ,
when using a right parameterization, or a similar definition
for left parameterizations. This can alternatively be written
in an abstract way, applicable to any group or vector space,
with

X ¼ X Å δx, δx∼Nð0,ΣÞ: (2)

Moreover, given that δx ¼ X .X , it follows from (2) that

pðXÞ ¼ η exp

�
�1

2

�X .X�TΣ�1
�X .X��bN L

�X ,Σ
�
,

where the reader should note the definition of the gener-
alized Gaussian N LðX ,ΣÞ (Bourmaud et al. (2016)).

3.1.3. Derivatives on Lie groups. Again following Solà
et al. (2018), the Jacobian of a function f: G → G, taken
with respect to X can be defined as

Df ðXÞ
DX

����
X
b

∂f
�X Å δx

�
. f

�X�
∂δx

����
δx¼0

, (3)

where it should be noted that the function
f ðX Å δxÞ. f ðXÞ of δx has R

m as both its domain and
codomain, and can thus be differentiated using any standard
technique. With the above general definition of a derivative,
it is easy to define the so-called Jacobian of G as J =
DExp(x)/Dx, where left/right group Jacobians are obtained
with left/right definitions of Å and . .

3.1.4. Composite groups. A composite groups is simply the
concatenation of N other Lie groups G1, …, GN (Solà et al.
(2018)), with elements of the form

X ¼ ðX 1,…XN Þ 2G1 ×/×GN :

The group operation, inverse, and identity are defined el-
ementwise. For example,
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X+Y ¼ ðX 1+Y1,…,XN+YN Þ:
Furthermore, defining δx ¼ ½δxT1 … δxTN �T the Å, operator
is given by

X Å δx ¼ ðX 1 Å δx1,…,XN Å δxN Þ
and a similar definition applies to . .

3.2. Maximum a posteriori

Maximum a posteriori (MAP) is the standard approach taken
in the robotics literature. Popular algorithms such as the ex-
tended Kalman filter (EKF), iterated EKF, sliding-window
filter, and batch estimator can all be derived from a MAP
approach, thus unifying them under a common theory. Given a
statistically independent measurement y with a standard
model as in (1), as well as a prior distribution pðXÞ ¼
N Lð �X , �PÞ, the estimate X̂ produced by the MAP approach is

X̂ ¼ argmax
X

pðXjyÞ

¼ argmax
X

η pðyjXÞpðXÞ

¼ argmax
X

η NðgðXÞ,RÞ N L

�
�X , �P

�
where η is a normalization constant. Equivalently, mini-
mizing the negative logarithm yields a nonlinear least-
squares problem of the form

X̂ ¼ argmax
X

1

2
eðXÞTWeðXÞ, (4)

eðXÞ ¼
	
X . �X
y� gðXÞ



,

where W ¼ diagð�P�1
,R�1Þ. Using an on-manifold opti-

mization approach, (4) can be solved by first parameterizing
the state with X ¼ X̂ Å δx and solving the problem

δbx ¼ argmax
δx

1

2
e
�
X̂ Å δx

�T
We
�
X̂ Å δx

�
: (5)

Using (3), the Jacobian of the error vector is given by

Hb
DeðXÞ
DX

����
X
¼

∂e
�
X̂ Å δx

�
∂δx

�����
δx¼0

,

and an approximate solution to (5) can be obtained by
solving the Gauss–Newton system

�
HTWH

�
δbx ¼ HTWe

�
X̂
�
:

The above is iterated with X̂← �X Å δbx and initialized
with X̂← �X . A common approximation for the posterior

covariance bP where pðXjyÞ ≈N LðX̂, bPÞ is given by bP ¼
ðHTWHÞ�1 with H evaluated at X̂.

3.3. Covariance intersection

Covariance intersection (CI) is a tool introduced by Julier
and Uhlmann (1997) for the purposes of decentralized data
fusion under unknown cross-correlations, and can be
summarized with the following lemma.

Lemma 1. Consistency of Covariance Intersection. The
inequality

1

w
Σxx 0

0
1

1� w
Σyy

2664
3775 ≥

"
Σxx Σxy

ΣT
xy Σyy

#
, (6)

which applies in the positive definite sense, holds for all w 2
(0, 1), where Σxx, Σyy, and the right-hand-side of (6) are
positive definite.

There are several known strategies for choosing w (Julier
(2001)). Following Shalaby et al. (2021b), a fixed value of
w = 0.99 is chosen for all the results shown in this paper, as it
is a simple approach that yields acceptable results.

4. A toy problem

Consider first one of the simplest multi-robot estimation
problems, shown on the left of Figure 1. Two robots are located
at positions r1 and r2, respectively, and both robots seek to
estimate both robots’ positions. By design, each robot carries
distinct, conceptually independent estimates, even though their
states represent the same true physical variables. This mimics
exactly what will occur in implementation, as each robot’s
processor will have a live estimate of both robots’ positions.
Their state vectors can therefore be defined as

x1 ¼
�
r½1�1 r½1�2

�T
, x2 ¼

�
r½2�1 r½2�2

�T
,

where the square bracket superscript (�)[i] is used when
necessary to denote Robot i’s estimate or “instance” of a
common physical variable. Each robot also collects local
measurements from its sensors. Robot 1 is capable of
measuring its own position,

y1 ¼ G1x1 þ v1, v1 ∼Nð0,R1Þ, G1 ¼ ½ 1 0 �,
while Robot 2 is only capable of measuring its position
relative to Robot 1,

y2 ¼ G2x2 þ v2, v2 ∼Nð0,R2Þ, G2 ¼ ½� 1 1 �:
To keep things simple for this demonstrative problem,
robots are assumed to have access to each other’s input
measurements, such as wheel odometry. This allows them to
predict their state forward in time using a conventional
Kalman filter. However, a more communication-efficient
solution will be proposed in Section 6. Neither robot is
capable of estimating their full state vector from local
measurements only, meaning that some form of commu-
nication will be required.
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To reflect the knowledge that the two robots’ state
vectors are physically the same, a key design choice of
this paper is to incorporate a pseudomeasurement of the
form

y12 ¼ x1 � x2 þ v12, v12 ∼Nð0,ΨÞ,
whose “measured” value is always exactly zero. This
pseudomeasurement can be viewed as a soft constraint on
the problem, inversely weighted by the arbitrary pseudo-
measurement covariance Ψ. The estimation problem is now
to compute, as accurately as possible, the posterior
distribution

pðx1, x2jy1, y2, y12Þ:

4.1. Solution via MAP

Applying MAP to this simplified problem is to say that

bx1,bx2 ¼ argma
x1, x2

x pðx1, x2jy1, y2, y12Þ: (7)

Assuming that v1, v2, v12 are all independent random
variables, that is, that p(v1, v2, v12) = p(v1)p(v2)p(v12), al-
lows the use of Bayes’ rule to write

pðx1, x2jy1, y2, y12Þ ¼ ηpðy1jx1Þpðy2jx2Þ
×pðy12jx1, x2Þpðx1, x2Þ,

(8)

where η is a normalization constant that does not depend on
x1 or x2. Next, assume that the prior distributions of the
robots are independent and Gaussian, possibly as a result of
using CI,

pðx1, x2Þ ¼ pðx1Þpðx2Þ ¼ N
�
�x1, �P1

�
N
�
�x2, �P2

�
: (9)

Substituting (9) into (8) and grouping terms into those
available to each robot yields

pðx1, x2jy1, y2, y12Þ ¼
ηpðy12jx1, x2Þðpðy1jx1Þpðx1ÞÞðpðy2jx2Þpðx2ÞÞ: (10)

Since the local measurement models are linear, it is
straightforward to exactly compute the terms

pðyijxiÞpðxiÞ ¼ ηipðxijyiÞ ¼ ηiN
�
~xi, ~Pi

�
, i ¼ 1, 2, (11)

using the regular Kalman filter equations. The means and
covariances ~xi, ~Pi (with tildes) represent the distribution
of each robot’s state conditioned on only local mea-
surements, without the information that the robots’ states
are physically the same. Substituting (11) into (10) yields
a simplified expression for the posterior, and the opti-
mization problem (7) now leads to the least-squares
problem

bx1,bx2 ¼ argmin
x1, x2

1

2
eðx1, x2ÞTWeðx1, x2Þ,

where

eðx1, x2Þ ¼

264 1 0

0 1

1 � 1

375	 x1
x2



�

264 ~x1
~x2
0

375bHx� z,

W ¼ diag
�
~P
�1

1 , ~P
�1

2 ,Ψ�1
�
:

In this linear case the unique solution bx is given by	bx1bx2


¼ �HTWH

��1
HTWz, (12)

which is also known to be the mean. The relevant matrices
expand to

HTWH ¼
24 ~P

�1

1 þΨ�1 �Ψ�1

� Ψ�1 ~P
�1

2 þΨ�1

35,
HTWz ¼

24 ~P
�1

1 ~x1

~P
�1

2 ~x2

35:
The next steps involve various applications of the Sherman-
Morrison-Woodbury (SMW) identities to analytically invert
the inverse covariance matrix HTWH, as well as solve for
the solution using (12). The derivation details are omitted
for brevity but follow the same steps as (Barfoot 2023, Ch.
3.3.2). The eventual result is

bx b

"bx1bx2
#
¼
"
~x1 þK1ð~x2 � ~x1Þ
~x2 þK2ð~x1 � ~x2Þ

#
,

bP b
�
HTWH

��1

¼
"
ð1�K1Þ~P1 �K1

~P2

� K2
~P1 ð1�K2Þ~P2

#
,

K1 b~P1

�
Ψþ ~P2 þ ~P1

��1

,

K2 b~P2

�
Ψþ ~P2 þ ~P1

��1

,

(13)

and furthermore pðx1, x2jy1, y2, y12Þ ¼ N ðbx, bPÞ, which is a
standard result fromMAP approaches (Barfoot (2023)). The
final individual estimates are obtained by marginalizing out
the other robots’ states, which is trivial to do in covariance
form by simply extracting the corresponding blocks frombx, bP, yielding

pðx1jy1, y2, y12Þ ¼ N
�bx1, ð1�K1Þ~P1

�
,

pðx2jy1, y2, y12Þ ¼ N
�bx2, ð1�K2Þ~P2

�
,

The equations (13) has a form similar to a situation where
robots simply treated the other robot’s state estimate as a
“measurement” of their own state. This is a result that is
specific to this simple toy problem, where robots have full
state overlap.
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Conditioning on the pseudomeasurement y12 has in-
troduced cross-correlation terms in (13), which are feasible
to keep track of for this two-robot scenario, but introduce
substantial complexity for an arbitrary multi-robot scenario.
Therefore, this paper simply employs the CI approximation
as required, including for this toy problem for the sake of
consistency. Specifically, before each state fusion using
(13), inflate the covariance matrices with

~P1 ←
1

w
~P1, ~P2 ←

1

1� w
~P2, (14)

where w = 0.99 is used.
Figure 2 shows the estimation error of each robot as

multiple pseudomeasurements are fused in succession. The
two robots’ estimates not only converge to zero error, but

also to a common value, which is the main effect of the
pseudomeasurement. A pseudomeasurement covariance of
Ψ = 10 �1 was chosen for this simulation to show its effect,
but smaller values can be used. Since the expressions in (13)
are in covariance form, it is even possible to use Ψ = 0, in
which case the two estimates will converge together after
the first pseudomeasurement. For the prior distributions,
arbitrary Gaussian distributions were chosen, with the initial
true states drawn from these distributions.

In Figure 3, 100 Monte Carlo trials are performed on
a simulation of this toy problem, but extended to four
robots using the methods from the next section. The
root-mean-squared error (RMSE) and normalized estima-
tion error squared (NEES), calculated as per (Bar-Shalom
et al., 2001, Ch. 5.4), are plotted through time. The lines
marked “Proposed” fuse pseudomeasurements as described,

Figure 2. Estimation convergence for a single trial of the two-robot toy problem with Ψ = 10 �1. Due to pseudomeasurements, the robot
states successfully converge to a common value.

Figure 3. Results of 100Monte Carlo trials for a four-robot version of the toy problem. The top two plots consist of a NEES plot, which is
a measure of consistency. The bottom plot is the RMSE of the state. The proposed solution, which performs CI, remains statistically
consistent and has reasonably low error in many cases.
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and use CI before each state fusion. The naive solution is
identical, but does not perform the covariance intersection step
in (14) before state fusion, thus completely neglects cross-
correlations. The centralized solution is simply a Kalman filter
with state x ¼ ½r1 r2�T fusing both the measurements y1 and
y2 using the standard equations. Although the use of CI does
introduce error compared to the centralized solution, it is still
vastly better than the naive approach.

5. General problem

Consider now N robots, which communicate in corre-
spondence with an arbitrary undirected graph G ¼ ðV, EÞ
where V ¼ f1,…,Ng is the set of nodes or robot IDs, and E
is the set of edges. The robots have states X i 2Gi, i2V
belonging to possibly different groups. Pseudomeasurement
models cij :Gi ×Gj →R

c are now defined in a generic way

yijk ¼ cij
�X ik ,X jk

�þ vijk , vijk ∼Nð0,ΨÞ,

for each pair ði, jÞ 2 E. Thesemodels are designed by the user,
and should correspond with redundant, common, or over-
parameterizations of states appearing on different robots,
such as when two robots are estimating the same physical
quantities. However, these quantities can also differ in the
way they are represented from robot to robot, such as each
robot resolving the same physical pose in their own frame,
and hence, the pseudomeasurement function is left as a
general nonlinear function. Examples shall be given in
Section 7 and 8.

Using MAP, the general state fusion problem is now

X̂ 1 :N ¼ argma
X1 :N

x p
�X 1 :N

��yij�, for all ði, jÞ 2 E:

It is easier to instead consider a single pseudomeasurement
at a time, such as, without loss of generality, y12. The
posterior distribution given only y12 is

pðX 1 :N jy12Þ ¼ ηpðy12jX 1,X 2ÞpðX 1 :N Þ
¼ η Nðc12ðX 1,X 2Þ,ΨÞ ∏

N

i¼1
N L

�
~X i, ~Pi

�
(15)

where robot state priors have again been assumed to be
independent, as a result of using covariance intersection.
Due to this independence, the variables X 3 :N can be re-
moved from the optimization problem since their optimal

values are simply bX 3 :N ¼ ~X 3 :N and have no effect on
X 1,X 2. Minimizing the negative logarithm of (15), omit-
ting terms involving X 3 :N , leads to a least-squares problem
with error vector given by

eðX 1,X 2Þ ¼
24 X 1 . ~X 1

X 2 . ~X 2

� c12ðX 1,X 2Þ

35,

and weight W ¼ diagð~P�1
1 , ~P

�1
2 ,Ψ�1Þ. Defining Ji as the

group Jacobian associated withGi, as well as Si, Sj being the
Jacobians of cij with respect to X i,X j, respectively, the
Jacobian of the error vector is

H ¼

2664 J�1
1 0

0 J�1
2

� S1 � S2

3775,
which is written without arguments ðX 1,X2Þ for brevity.
The relevant terms of the Gauss–Newton system are

HTWH ¼"
J�T
1 P�1

1 J�1
1 þ ST

1Ψ
�1S1 ST

1Ψ
�1S2

ST
2Ψ

�1S1 J�T
2 P�1

2 J�1
2 þ ST

2Ψ
�1S2

#
,

HTWeðX 1,X 2Þ ¼24 J�T
1 P�1

1

�
X 1 . ~X 1

�
� ST

1Ψ
�1c12ðX 1,X 2Þ

J�T
2 P�1

2

�
X 2 . ~X 2

�
� ST

2Ψ
�1c12ðX 1,X 2Þ

35,
which, by substantial manipulation with the SMW identi-
ties, can be used to analytically compute

δbx ¼ ðHTWHÞ�1HTWeðbX 1, bX 2Þ, producing on-manifold
iterated-EKF-like expressions. The result is

δbx1 ¼ �J1
�bX 1 . ~X 1

�
þK1z,

δbx2 ¼ �J2
�bX 2 . ~X 2

�
þK2z,

K1 ¼ J1~P1J
T
1S

T
1V

�1,

K2 ¼ J2~P2J
T
2S

T
2V

�1,

z ¼ �c12
�
~X 1, ~X 2

�
þ S1J1

�bX 1 . ~X 1

�
þS2J2

�bX 2 . ~X 2

�
,

V ¼ Ψþ S1J1~P1J
T
1S

T
1 þ S2J2~P2J

T
2S

T
2 ,

(16)

where iteration is done with bX i←bX i Å δbxi, after initiali-
zation with bX i← ~X i, until a convergence condition is met,
such as δbxi being sufficiently small. The marginal posterior
covariances of Robots 1 and 2 are obtained from the cor-

responding diagonal blocks of ðHTWHÞ�1, and can be
shown to be

bP1 ¼ ð1�K1S1ÞJ1~P1J
T
1 ,bP2 ¼ ð1�K2S2ÞJ2~P2J
T
2 :

(17)

The above fusion step introduces cross-correlations be-
tween the state estimates of X 1 and X 2, and hence require a
covariance intersection step

bP1 ←
1

w
bP1, bP2 ←

1

1� w
bP2,w2 ð0, 1Þ:
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The next step is to make the approximation that

pðX1 :N jy12Þ ≈∏N
i¼1N LðbX i, bPiÞ, and proceed with the fu-

sion of a second pseudomeasurement, using
pðX1 :N jy12, y13Þ ¼ ηpðy13jX 1,X 3ÞpðX 1 :N jy12Þ. This new
posterior can again be approximated as Gaussian using the
expressions in (16) and (17), and the process is repeated
until all pseudomeasurements are incorporated. The order in
which the pseudomeasurements are fused is arbitrary and
will correspond to the times at which information is shared
between robots.

If only one iteration is performed, equations (16) and
(17) simplify to the on-manifold EKF equations since

Jið ~X i . ~X iÞ ¼ Jið0Þ ¼ 1. Much like the EKF is often
sufficient compared to the iterated EKF, performing a single
iteration in this multi-robot case is also sufficient for some
problems. Algorithm 1 summarizes the general-purpose
decentralized estimation algorithm from the point of view
of an arbitrary robot. The algorithm is presented in a
callback format, describing how the current state estimate is
updated when various events occur.

A feature of Algorithm 1 is that the robots can share their
state information at anytime, with performance

improving the more often sharing occurs, at the cost of
increased communication bandwidth. After states are
shared and pseudomeasurements are fused, the common
states between robots will naturally drift due to sensor
noise, until the next pseudomeasurement re-
synchronizes the common states. This therefore be-
comes a tunable trade-off between estimation accuracy
and communication bandwidth, which needs to be
evaluated for a specific problem. In this paper’s ex-
periments, sharing is done at a set frequency of 10 Hz.
Regarding computational complexity, Algorithm 1 will
share a nearly identical runtime to a Kalman filter.

5.1. An observability test

In a decentralized state estimation context, observability
refers to the ability for each robot to uniquely determine
their state trajectory, given the inputs and measurements
obtained by all robots. Determining observability for a
decentralized estimator is non-trivial due to the need to
capture the communication topology within the test itself.
To illustrate this, consider again the linear toy problem with
two robots from Section 4. A naive approach to determining
observability would be to construct one “total state”

x ¼ ½x1 x2�T, and to perform a standard observability test
on this augmented system using the collected sensor
measurements from both robots y1, y2. However, such a
test would falsely conclude that the system is unob-
servable, whereas the results from Section 4 clearly
show successful estimation. The pseudomeasurement
must additionally be incorporated into the test to give
the correct result, as the robots are reliant on commu-
nication to attain observability of their individual states.
To the best of the authors’ knowledge, existing ob-
servability tests do not take into the full problem scope
that this paper is concerned with. A decentralized ob-
servability test is presented in Pilloni et al. (2013) for
linear-time-invariant systems with unknown input, but
assumes each node is observable. The observability
analysis in Huang et al. (2011) has a similar approach to
this paper, but is specific to their system where robots
have identical state definitions.

An advantage of the proposed approach is that the effects
of communication of observability can be accurately cap-
tured by incorporating the pseudomeasurements themselves
into a standard observability test. Concretely, for nonlinear
systems, a local observability test can be formed by con-
sidering the MAP problem on an entire trajectory simul-
taneously, but without prior information on the initial state
(Psiaki (2013)). Applying this to the multi-robot system, let
the bolded X k ¼ ðX 1k ,…,XNkÞ denote the “total state” of

all robots at time step k, and yk ¼ ½yT1k … yTNk
�T denote a

stacked vector containing all the robots’ local measurements

at time step k. Let ψk ¼ ½ … yTij … �T, ði, jÞ 2 E denote the

stacked pseudomeasurements between all robots at time
step k. The MAP problem is
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bX 0 :K ¼ argma
X0 :K

x pð X 0 :K jy0 :K ,ψ0 :KÞ

with

pð X 0 :K jy0 :K ,ψ0 :KÞ ¼
η∏

K

k¼0
pðy0j X 0Þpðψ0j X 0Þ∏

K

k¼1
pð X k j X k�1Þ,

leading to a nonlinear least-squares problem with weightW
and error vector

eð X 0 :KÞ ¼ � … eu, k … ey, k … eψ, k …
�T
,

eu, k ¼ �…ðX ik . fðX ik�1
,uik�1

ÞÞT…�,
ey, k ¼ � …

�
yik � gðX ikÞ

�T
…
�
, i ¼ 1,…,N ,

eψ, k ¼ � … � cij
�X ik ,X jk

�T
…
�
, ði, jÞ 2 E:

The error Jacobian is

H ¼

266666666666666664

� F0 1
1 1

� FK�1 1
� G0

� G1

1
� GK

� Φ0

� Φ1

1
� ΦK

377777777777777775
,

Fk ¼ diag

�
…,

DfðX ik ,uikÞ
DX ik

,…

�
,

Gk ¼ diag

�
…,

DgðX ikÞ
DX ik

,…

�
, i ¼ 1,…,N ,

Φk ¼ �Deψ, kðX kÞ
D X k

,

with all undisplayed entries in H equal to zero. For the
solution to the MAP problem to be unique, then to first
order, ðHTWHÞ must be invertible, and thus full rank.
Fortunately, W is always positive definite regardless of any
cross-correlations that would add off-diagonal entries.
Hence,

rank
�
HTWH

� ¼ rankðHÞ,

and it is thus required that H be full column rank. This
implies that the proposed observability test is unaffected
by the approximation induced by CI, or any cross-
correlation terms that may or may not be successfully
tracked. In a similar way to (Barfoot 2023, Ch 3.1.4), it
can be shown that by performing a variety of elementary
row/column operations, the rank of H is equivalent to the
rank of

O ¼

2664
M0

M1F0

«
MKFK�1…F0

3775,Mk ¼
	
Gk

Φk



:

Hence, if O has maximum rank, the solution to the MAP
problem is locally unique, and the system is said to be ob-
servable. Note that this test easily allows for time-varying
graphs, which would yield a differentΦk for each time step k.

6. Efficient odometry sharing
using preintegration

Many problems, especially those where robots estimate
their neighbors’ positions, will require robots to have access
to their neighbors’ process model input values u. Previously
in this paper, it has been assumed that all robots have
unrestricted access to each other’s inputs. In robot state
estimation applications, the input is often the odometry
measurements, such as wheel encoder or IMU measure-
ments. These can occur at frequencies of 100–1000 Hz, and
can therefore be infeasible to share in real time, especially if
multiple robots are to simultaneously share measurements at
high frequency. This could quickly reach a bandwidth limit
on the common communication channel, such as ultra-
wideband radio. While Xu et al. (2020) solve this prob-
lem by directly sharing pose changes between two points in
time, this violates statistical independence assumptions and
leads to inconsistent estimates.

The proposed solution to this problem is to use pre-
integration. That is, robots will instead share preintegrated
input measurements over an arbitrary duration of time in-
stead of individual input measurements. Specifically, con-
sider the following generic process model

X k ¼ fðX k�1,uk�1,wk�1Þ:
The action of preintegration is to directly iterate this process
model by repeated compositions in order to, after algebraic
manipulation, generate a new preintegrated process model
fpq that relates two states at arbitrary time steps k = p and k =
q. That is,

X pþ1 ¼ f
�X p,up,wp

�
,

X pþ2 ¼ f
�
f
�X p,up,wp

�
,upþ1,wpþ1

�
,

«
X q ¼ f

�
f
�
…f
�X p,up,wp

�
…
�
,uq�1,wq�1

�
bfpq

�X i,ΔX pq

�
Å wpq,

(18)

where ΔX pq is the relative motion increment (RMI), which
in general may also belong to a Lie group, and
wpq ∼Nð0,QpqÞ is the preintegrated noise. The advantages
of preintegration will stem from the careful choice of RMI
definition, which is ideally done such that the RMI has the
following properties.
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1. The RMI is determined from the input measurements
exclusively, and is independent of the state estimate:

ΔX pq ¼ ΔX pq

�
up : q�1

�
:

2. Far fewer numbers are required to represent the RMI
than the (q� p) raw measurements that occurred during
the preintegration interval:

dim
�
ΔX pq

�� ðq� pÞdimðukÞ:
If the above points are true, communicating ΔX pq,Qpq

instead of up:q�1 will not only reduce the communication
cost, but will also result in a fixed message size and ability
to directly predict the state forward over a long duration
of time, instead of sequentially processing the mea-
surements. Note that it is not always possible to define an
RMI such that (18) holds exactly. However, it turns out
that many common process models in robotics are
amenable to preintegration (Barrau and Bonnabel (2019);
Eckenhoff et al. (2019)), and furthermore are typically
extremely fast to preintegrate incrementally as input
measurements are obtained (Forster et al. (2017)). In
other words, there exists a function INCREMENT(�) defined
such that it satisfies

ΔX pq,Qpq ¼ INCREMENT ðΔXp : q�1,Qp : q�1, uq�1Þ.
A few examples now follow, which describe concrete

implementations of ΔX pq, fpq(�), and INCREMENT(�).

Example 1. Linear preintegration. The linear process
model

xk ¼ Fk�1xk�1 þ Lk�1uk�1

can be directly iterated to yield

xq ¼
 

∏
q�1

k¼p
Fk

!
xp þ

Xq�1

k¼p

�
∏
q�1

l¼kþ1

Fl

�
Lkuk

bFpqxp þ Δxpq,

(19)

where (19) defines f(�). Assuming that noise enters the model
additively through the input uk ¼ uk þ wk , where
wk ∼Nð0,QkÞ, (19) becomes xj ¼ Fpqxi þ Δxpq þ wpq

where

wpq b
Xq�1

k¼p

�
∏
q�1

l¼kþ1

Fl

�
Lkwk ,

¼ Fq�1wpq�1 þ Lq�1wq�1:

The RMI Δxpq and corresponding covariance are therefore
built incrementally with

Δxpq ¼ Fq�1Δxpq�1 þ Lq�1uq�1,

Qpq ¼ Fq�1Qpq�1F
T
q�1 þ Lq�1Qq�1L

T
q�1,

which together define the INCREMENT(�) function.

Example 2. Wheel odometry preintegration on SE(2).
Given a robot pose T 2 SE(2), the wheel odometry
process model is given by

Tk ¼ Tk�1 ExpðΔtuk�1Þ,
where u ¼ ½ω v 0�T, ω is the robot’s heading rate-of-
change, and v is its forward velocity in its own body
frame. Direct iteration yields the preintegrated process
model fpq(�) given by

Tq ¼ Tp∏
q�1

k¼p
ExpðΔtukÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
bΔTpq

:

Noise wk ∼Nð0,QkÞ is again assumed to enter additively
through the input, and a series of first-order approximations
lead to

ΔTpq ¼ ∏
q�1

k¼p
ExpðΔtðuk þ wkÞÞ

≈∏
q�1

k¼p
ExpðΔtukÞExpðΔtJkwkÞ

≈ΔTpq∏
q�1

k¼p
Exp

�
ΔtAd

�
ΔT�1

kþ1j

�
Jkwk

�
,|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ExpðwpqÞ
where JkbJðΔtukÞ is the right Jacobian of SE(2). Having
identified an expression for Exp(wpq), under the assumption
that wpq is small,

wpq ≈
Xq�1

k¼p

ΔtAd
�
ΔT�1

kþ1q

�
Jkwk

¼
Xq�2

k¼p

ΔtAd
�
ΔT�1

kþ1q

�
Jkwk

þΔtAd
�
ΔT�1

qq

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1

Jq�1wq�1

¼ Ad
�
ΔT�1

q�1q

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

bFq�1

wpq�1 þ ΔtJq�1|fflfflffl{zfflfflffl}
bLq�1

wq�1,

and the defining operations of the INCREMENT(�) function
follow,

ΔTpq ¼ ΔTpq�1 ExpðΔtukÞ,
Qpq ¼ Fq�1Qpq�1F

T
q�1 þ Lq�1Qq�1L

T
q�1:

Example 3. IMU preintegration. Being the most well-
known usage of preintegration, a complete reference for
IMU preintegration on the SOð3Þ×R3 ×R3 manifold
can be obtained from Forster et al. (2017), and alter-
natively for the SE2(3) group from Brossard et al. (2022);
Barfoot (2023). Either approach can be used with the
framework in this paper. However in Section 8 of this
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paper, Twi 2 SE2(3) matrices are used to represent the
extended pose of Robot i relative to an inertial world
frame w. Following Shalaby et al. (2023) and Brossard
et al. (2022), it can be shown that the discrete-time IMU
kinematic equations can be written in the form

Twik ¼ Gk�1Twik�1
Uk�1, (20)

where

Twik ¼

2664
C v r

0 1 0

0 0 1

3775

Gk�1 ¼

26664
1 Δtg �Δt2

2
g

0 1 �Δt

0 0 1

37775

Uk�1 ¼

26664
expðΔtω⋀Þ ΔtJðΔtωÞa Δt2

2
NðΔtωÞa

0 1 Δt

0 0 1

37775
NðfÞ ¼ zzT þ 2

�
1

f
� sinf

f2

�
z⋀ þ 2

cosf� 1

f2 z⋀z⋀

f ¼ kfk, z ¼ f=f

and C 2 SO(3), v, r respectively represent attitude, velocity,
position relative to the world frame w,ω is the IMU’s unbiased
gyro measurement, a is the IMU’s unbiased accelerometer
measurement, g is the gravity vector resolved in frame w, and
J(f) is the left Jacobian of SO(3). Preintegration of these
kinematics is easily achieved by direct iteration with

Twiq ¼
 

∏
q�1

k¼p
Gk�1

!
Twip

 
∏
q�1

k¼p
Uk�1

!
bΔGpqTwipΔUpq

where ΔUpq is the RMI, and the noise statistics can be
propagated through this preintegration process by a
standard linearization procedure. Shalaby et al. (2023)
present the details of the noise propagation, as well as
how to adapt this formulation for relative poses.

6.1. Multi-robot preintegration

In the context of multi-robot estimation problems, an in-
dividual robot’s process model may involve the input values
of many neighboring robots. To reflect this, rewrite the
process model for Robot i as

X ik ¼ f
�X ik�1,uik�1, ujk�1

�
, j2N i, (21)

where uik denotes an input measured by Robot i and N i

denotes the set of neighbor IDs of Robot i. The preintegrated
process model would now be written as

X iq ¼ fpq
�
X ip,ΔX ipq,ΔX jpq

�
, j2N i (22)

where ΔX ipq denotes an RMI calculated from the input
measurements of Robot i.

A complication is that the RMIs from neighboring
Robots ΔX jpq are only available asynchronously, meaning it
is not always possible to evaluate (22) directly. To deal with
this, assume that the state can be temporarily partially
propagated with a value of 0 for the neighbor’s input, and
then fully propagated once the RMI is shared. That is,
assume the preintegrated process model fpq is compatible
with

Xik�1
¼ fðX ik�2

, uik�2
, 0Þ,

Xik ¼ fðXik�1, uik�1, 0Þ,
X ik ¼ f pq

�
Xik , I ,ΔX jpq

�
,

where I is the “identity” or “zero” RMI constructed
from input values of zero, and f is defined as per (21)
with uj substituted for 0. The variable Xik represents an
intermediate, non-physical state that is propagated using
the process model without input information from
neighboring robots. Sometime later, at arbitrary time
step k = q, the RMI from a neighboring robot ΔX jpq is
received and this intermediate state Xiq is propagated
back into a physically meaningful quantity X iq. A
concrete example of this asynchronous intermediate
state updating is shown in Section 7, and a summary is
shown in Algorithm 2.
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6.2 Estimating input biases

For some problems, it may be desired to estimate an input
bias b as part of the overall state X , (a) setup commonly
occurring in inertial navigation where accelerometer and
rate gyro biases are estimated. The difficulty lies in the
frequent inability to express RMIs independently of the
bias values, thus leaving RMIs in the form of

ΔX pq

�
up : q�1,bp : q�1

�
In the context of the multi-robot estimation scheme shown
in Algorithm 2, computing RMIs this way causes incon-
sistency in the filter, since the RMIs are now correlated with
the robot states. Accounting for this would require main-
taining the cross-correlation between a robot’s state and
their neighbors’ biases.

A simpler alternate solution is to have robots estimate
their neighbors’ input biases in addition to their own. This
requires to exploit the fact that biases are usually modeled
to follow a random walk, and therefore have a constant
mean in the absence of any correcting information. This
motivates the approximation bp ≈ bp+1 ≈ … ≈ bq and
hence

ΔX pq

�
up : q�1,bp : q�1

�
≈ΔX pq

�
up : q�1, bq

�
:

When robots receive input measurements, they incre-
ment their RMIs with raw (biased) inputs to produce
biased RMIs ΔX pqðup : q�1, 0Þ. At an appropriate time,
they share their current biased RMIs, which is corrected
for bias by the receiving robot using the first-order
approximation

ΔX pq

�
up : q�1,bq

�
≈ΔX pq

�
up : q�1, 0

�
Å Bpqbq,

Bpqb
D

Dbq

�
ΔX pq

�
up : q�1, bq

��
,

(23)

where Bpq is defined as the bias Jacobian. Equation (23) is
an approximation that contributes unmodeled errors to the
estimation problem, relying on an assumption that bq is
small. This can be enabled by a proper offline calibration
procedure that removes any large bias, and only small
deviations from this are estimated online. Such a procedure
is used for the quadcopter problem in Section 8, where
good, consistent estimation results are still obtained despite
the approximation in (23).

6.3. Autoencoding covariance matrices

As shown in Algorithm 2, predicting state estimates that are
a function of neighbor inputs requires the RMI ΔX pq along
with a corresponding covariance Qpq. As is, these two
quantities must be shared between robots. This section
proposes an optional method that further reduces com-
munication costs by eliminating the requirement to share the
preintegrated covariance Qpq.

The key insight is that ΔX pqðup : q�1Þ andQpq(up:q�1) are
both calculated from the same input values up:q�1. Hence, if
an alternate mappingQpq ¼ hðΔX pqÞ existed, then it would
be sufficient to share ΔX pq only, and the receiving robot
could infer Qpq directly from the RMI. In the absence of
analytic expressions for h(�), this paper approximates the
function with a neural network, trained on purely synthetic
RMI covariance pairs. An additional complication is that
such a function h(�) may not always exist since an RMI can
correspond to many possible covariances depending on the
input values. In this case h(�) is not a true function since it is
one-to-many, and its definition is modified to also accept a
low-dimensional encoding e(Qpq), leading to
Qpq ¼ hðΔX pq, eðQpqÞÞ. This leads to an architecture here
referred to as mean-assisted autoencoding, depicted in
Figure 4.

The flattened lower-triangular half of Qpq is given to a
simple fully connected encoder network with GELU acti-
vation functions and a single hidden layer with 256 neurons.
The output of this network is the encoding, which can be as
small as one or two numbers. This encoding is then con-
catenated with a parameterization of the RMI ΔX pq and fed
to a similar decoder network, again with a single 256-
neuron hidden layer. The decoder network outputs the
flattened lower-triangular half of a Cholesky decomposition
L, which is used to reconstruct the matrix using bQpq ¼ LLT.
The covariance matrix is guaranteed to be positive definite
as long as the diagonal elements of L are non-zero, which is
extremely unlikely to occur in practice. For training, the loss
function simply uses the Frobenius norm,

L
�
Qpq, bQpq

�
¼
���Qpq � bQpq

���
F
:

Figure 5 shows the training convergence history for various
encoding sizes, applied to IMU preintegration. The Adam
optimizer is chosen with an initial learning rate of 10�3 that

Figure 4. Concept diagram of mean-assisted autoencoder.
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is scheduled to decrease once the loss plateaus. The training
process takes just a few minutes on a laptop CPU to achieve
less than 1% average reconstruction error on a validation
dataset from experimental data. The “No encoding” base-
line represents an architecture where the decoder network
attempts to infer the covariance matrix directly from the
RMI itself, without using the output of the encoder network,
and hence eliminating the need to communicate RMI co-
variance information. However, doing this yields substan-
tially higher error than when an encoding is provided. A
visualization of the reconstructed covariance matrices can
be seen in Figure 6, using an encoding size of only one
number. Section 8 will employ this method “in the loop” for
a real quadcopter problem. It will be shown that the re-
construction error is so small that the impact on the esti-
mation results are negligible.

The training data is purely synthetic, where RMIs are
constructed from a random amount of random IMU mea-
surements, with values covering the realistic range of real
IMU measurements. Since the length of the dataset is in-
finite, the risk of overfitting is completely eliminated, as
long as the real IMU measurements lie within the range of
randomly generated values. In fact, the networks immedi-
ately generalize to any physical sensor of the same type.

Physical characteristics such as biases, scale factors, and
axis-misalignments are irrelevant since the result after these
effects is still a list of values representing the sensor
measurements. As long as those values remain within the
randomly generated training domain, the network will
perform well. In Section 8, the same autoencoder is used on
three different quadcopters each with different physical
IMUs.

Concretely, using IMU preintegration as an example, the
RMI itself must be communicated, which requires 10
floating-point numbers. However, the covariance matrix is
15 × 15, which would require communication of an addi-
tional 120 floating-point numbers to represent one of its
triangular halves. With the proposed autoencoder, these 120
numbers are replaced with an encoding consisting of one
number, thus dramatically reducing the communication
cost. Figure 7 shows how the required communication rate
varies with the duration between two successive commu-
nications between two arbitrary robots. The naive solution
without preintegration requires sharing all input measure-
ments that have occurred during that period, whereas
preintegration yields a constant message size. The proposed
method can be applied to all problems discussed in the
paper, where the networks must be trained for each problem.

Figure 5. Mean percentage reconstruction error throughout training for various encoding sizes including no encoding. A single encoding
number is sufficient to achieve less than 1% reconstruction error on average.

Figure 6. Visualization of preintegrated IMU noise covariance matrices along with reconstruction using mean-assisted autoencoding.
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7. Simulation with ground robots

The proposed algorithm is tested in a simulation with
ground robots, shown in the center of Figure 1. Each robot
estimates their own pose and their neighbors’ poses relative
to a world frame. Denoting the pose of Robot i relative to the
world frame w as Twi 2 SE(2), the state of an arbitrary robot
is given by

X ik ¼
�
T½i�

wik ,T
½i�
wjk ,…

�
, j2N i,

where, again, the (�)[i] superscript indicates Robot i’s esti-
mate or “instance” of that physical quantity. Each robot
collects wheel odometry at 100 Hz, providing

uik ¼ ½ωik vik 0�T as input measurements, where ωik is
Robot i’s angular velocity and vik is its forward velocity in its
own body frame. The pose kinematics for any single robot
along with its preintegration are shown in Example 2. When
Robot i receives an input measurement, it updates the part of
its state corresponding to its own pose to create

Xik ¼
�
T½i�

iwk�1
ExpðΔtuik�1Þ,T½i�

wjk�1
,…
�
:

The neighbor poses Twjk�1 are now out of date, as neigh-
boring odometry information is not yet accessible to Robot
i, and this partially out-of-date state is non-physical and
given the symbolXik . Every robot computes their own RMIs
from wheel odometry using the equations from Example 2.

When a neighbor’s RMI ΔTjpq is received at some later time
step k = q, the state is updated with

X iq ¼
�
T½i�

iwq
,T½i�

wjpΔTjpq,…
�

where p represents the time step index of the last time a
neighbor RMI was received.

Each robot also collects range measurements to its
neighbors at 10 Hz, with the connectivity graph shown in
Figure 1 (middle). Only two robots collect relative position
measurements to known landmarks at 10 Hz. At an arbitrary
separate frequency, each robot sends its current state and
covariance to its neighbors, allowing the neighbors to
compute pseudomeasurements of the form

cij
�X i,X j

� ¼
26666664
Log

�
T½i��1

wi T½j�
wi

�
Log

�
T½i��1

wj T½j�
wj

�
Log

�
T½i��1

wl T½j�
wl

�
«

37777775,l2N i \ N j:

A simulation is performed with four robots each executing
Algorithm 2, with root-mean-squared error (RMSE) shown
in Figure 8. The initial states are initialized to ground truth
with some random error with covariance �Pi0 ¼ 0:12 � 1. The
position and range measurements have Gaussian noise with
0.3 m and 0.1 m of standard deviation, respectively, and the

Figure 7. RMSE for the ground robot simulation. There are four blue lines for the four robots running the proposed algorithm, and four
visibly coincident red lines for the naive algorithm. Left: State fusion occurring at 10 Hz. Right: State fusion occurring at 1 Hz.

Figure 8. 50-trial NEES plot for the ground robot simulation for the proposed versus centralized solution, with the multiple blue lines
each representing a robot. The naive solution without CI is far outside the plot. The red line represents the expected NEES value.
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pseudomeasurement covariance is Ψ = 0. The results show
that all four robots’ estimation errors successfully stabilize
and remain low, despite only two robots having sufficient
sensors to make their states observable. Similar to the Toy
Problem, the naive solution is implemented which is
identical to the proposed solution, but does not do a CI step.
A 50-trial Monte Carlo simulation was also performed with
the resulting average NEES plotted in Figure 9. The naive
solution has significantly higher error than both the cen-
tralized or proposed algorithms and is so overconfident that
it cannot be plotted within reasonable axis limits in Figure 9.
Although, in theory, the proposed algorithm should have
lower NEES values than the centralized solution, Figure 9
shows comparable values. This is suspected to be due to the
high degree of nonlinearity of the problem.

As seen in Figure 8, if state fusion is done at a sufficiently
high-frequency, performance is even comparable to the cen-
tralized estimator, but this will incur a larger communication
and computation requirement as discussed in Section 5.

8. Simulation and experiments
with quadcopters

To demonstrate the flexibility of the proposed framework,
consider a new problem involving quadcopters. The ki-
nematic state of each quadcopter is modeled using extended
pose matrices T 2 SE2(3) (Brossard et al. (2022)). Each
robot estimates both their absolute pose relative to the world
frame Twi 2 SE2(3), their own IMU bias bi, as well as the
relative poses of their neighbors Tij 2 SE2(3) and their IMU
bias bj. The full state of Robot i is then given by

X i ¼
�
Twi,b

½i�
i ,Tij,b

½i�
j ,…

�
, j2N i:

The pose of Robot j relative to Robot i Tij has kinematics
involving the IMU measurements of both robots, and are
given in discrete time by

Tijk ¼ U�1
ik�1

Tijk�1Ujk�1,

where Ujk�1 has an identical definition as in (20), but
computed from Robot j’s IMU measurements. When Robot
i receives input measurements from its own IMU uk, it
predicts the part of its own state corresponding to its own
pose, and additionally performs a partial prediction on the
relative poses with

Xik ¼
�
Gk�1Twik�1Uik�1,b

½i�
ik�1

,U�1
ik�1

Tijk�1,b
½i�
jk�1

,…
�
:

The terms which are the partially
predicted neighbor poses, are a strange, non-physical in-
termediate state. Only when the neighbor’s RMI ΔUjpq is
received do the neighbor poses regain meaning with

However, since biases are also being
estimated in this problem, Robot i must first correct the
neighbor’s raw RMIs ΔUjpqðujp : q�1, 0Þ using its estimate of
the neighbor’s IMU bias, as described in Section 6.2. That
is,

ΔUjpq ≈ΔUjpq

�
ujp : q�1, 0

�
Å Bjpqb

½i�
jq ,

leading to the full state update given by

Finally, the pseudomeasurements chosen for this problem
are

cij
�X i,X j

� ¼

2666666666664

Log
�
TwiTijT

�1
wj

�
Log

�
TijTji

�
b½i�
i � b½j�

i

b½i�
j � b½j�

j

Log
�
TijTjlT

�1
il

�
«

3777777777775
,l2N i \N j:

with corresponding covariance Ψ = 0.

8.1. Hardware setup

The hardware setup in these experiments can be seen in
Figure 10. Three Uvify IFO-S quadcopters are used that
each possess an IMU at 200 Hz, a 1D LIDAR height sensor
at 30 Hz, and magnetometers at 30 Hz. Additionally, two
ultra-wideband (UWB) transceivers are installed on the
quadcopter legs, producing inter-robot distance measure-
ments at 90 Hz for each robot. As shown by Shalaby et al.
(2021a), installing multiple UWB tags per robot results in
relative position observability. The UWB transceivers are
custom-printed modules that use the DW1000 UWB
transceiver. The firmware for these modules has been
written in C, implementing a double-sided two-way-ranging
protocol with details described by Shalaby et al. (2022).
Shalaby et al. (2022) also describe the power-based bias
calibration and noise characterization procedure used in
these experiments. Since all transceivers operate on the

Figure 9. Message size in bytes required to share odometry, as a
function of the time period between communications between
two robots. The red line “without preintegration” naively
transmits all input measurements that occurred within the time
period. Preintegration maintains a constant message size while
providing identical information.
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same frequency in these experiments, only one can transmit
at a time to avoid interference. A decentralized scheduler is
therefore implemented that continuously cycles through all
transceiver pairs one at a time, obtaining range measure-
ments and potentially transmitting other useful data. In these
experiments, the communication graph is complete with all
quadcopters capable of communicating with each other.
Preintegrated RMIs are shared whenever a UWB mea-
surement occurs, and state sharing occurs at a separate
frequency of 10 Hz.

AVicon motion capture system is used to collect ground
truth, from which synthesized absolute position measure-
ments with a standard deviation of 0.3 m are generated for
Robots 1 and 2 only. Robot 3 does not receive absolutely
position measurements, nor any magnetometer measure-
ments, and therefore has no absolute pose information

available without communication with the other two robots.
Example trajectories for some of the experimental trials are
shown in Figure 11.

8.2. Simulation results

The algorithm is first tested with simulated versions of the
described quadcopters, and the estimation results for Robot
3’s absolute pose and bias are shown in Figure 12. Although
there are many other states associated with the simulation,
these states are the most interesting as they are the ones that
are unobservable without incorporation of the pseudo-
measurements. Figure 12 shows that Robot 3 is capable of
estimating its own absolute pose and bias, using information
from sensors located on Robots 1 and 2. Furthermore, the
errors remain within the 3-sigma confidence bounds, even

Figure 10. Simulated estimation error of Robot 3’s estimate of its own kinematic state and IMU biases. The estimate and corresponding
bounds with the proposed algorithm are shown in blue, with the centralized estimate overlayed in dark gray. For attitude, the x� y� z
components represent roll-pitch-yaw errors, respectively. Note that Robot 3 does not have position measurements, and therefore cannot
observe the states shown in this plot without information sharing. The naive solution has rapidly diverging error and is not plotted.

Figure 11. Top: Three quadcopters in flight under a motion capture system. Bottom left: custom UWB module. Bottom right: a close
up of the Uvify IFO-S quadcopter, fitted with a UWB module seen on the left leg, as well as on the opposite leg.
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with the first-order RMI bias correction, indicating statis-
tical consistency.

Figure 13 shows the positioning RMSE for varying
frequency at which state information between robots is
shared. At lower frequencies, Robot 3’s estimate has more
time to drift between communications, and hence, there is
higher error. For this problem, roughly the same estimation
performance is achieved for state sharing of 20 Hz and
above, with 10 Hz being a compromising value providing a
trade-off between accuracy and communication cost.

8.3. Experimental results

Multiple experimental runs are performed on different days,
with the absolute positioning results for each robot viewable
in Table 1. In some cases, the proposed algorithm even

outperforms the centralized solution, which is theoretically
optimal. However, the real world contains many un-
modelled sources of error, such as frame misalignments,
timestamping errors, vibrations, and UWB ranging outliers.
These effects may break the assumptions that the optimality
of the centralized estimator relies on. Even after tuning
covariances to obtain the best centralized performance, it
appears that the results benefit from the covariance inflation
resulting from CI. For both estimators, the IMU is calibrated
to compensate for large biases and scaling factors. The
normalized-innovation-squared test (Bar-Shalom et al.
(2001)) is also used to reject UWB outliers in both
estimators,

A plot of RMSE versus time for Robot 3’s absolute states
can be seen in Figure 14, which are states that are unob-
servable from Robot 3’s own measurements. Again,

Figure 12. Examples of the various trajectories flown in the experimental trials, where each color represents a different quadcopter.

Figure 13. Average self-positioning RMSEwith varying communication rate for the simulated version of the quadcopter problem. Robot
3 does not receive position measurements, and hence is reliant on the other robots to have an observable state.

Table 1. Self-Positioning RMSE (m) From Experimental Trials.

Trial #

Centralized Proposed Error Reduction

Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3

1 0.43 0.49 0.55 0.22 0.22 0.61 �48% �54% 10%
2 0.18 0.26 0.34 0.16 0.18 0.40 �13% �28% 16%
3 0.17 0.24 0.68 0.16 0.17 0.45 �10% �28% �33%
4 0.20 0.25 0.31 0.26 0.28 0.48 32% �13% 55%
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Figure 14 shows that error magnitudes lie in similar ranges
for both the centralized and decentralized estimators.
Figure 15 compares two decentralized estimator runs, with
one using the mean-assisted autoencoder from Section 6.3.
As desired, the lines are identical, and the plot shows that the
estimate is unaffected by the autoencoding. This means that
the autoencoder is highly effective at compressing the
covariance matrix with minimal reconstruction error.

9. Conclusion

This paper presents a general-purpose algorithm for de-
centralized state estimation in robotics. The algorithm is
the result of a new way to formulate the decentralized state
estimation problem, specifically with the assistance of
pseudomeasurements that allow the definition of arbitrary
nonlinear relationships between robot states. For prob-
lems involving relative measurements, a communication-
efficient approach is proposed for preintegratable process
models, as defined by (18), where state-change infor-
mation is shared in the form of relative motion increments.

The algorithm is tested on three different problems, each
involving a variety of state definitions, process models,
and measurements. In all of the presented problems, ro-
bots only need to share their states, RMIs, and corre-
sponding covariances, which ultimately results in average
transmission rates per robot of 0.2 kB/s for the toy
problem, 4.5 kB/s for the ground robots, and 53.2 kB/s for
the quadcopters.

Thanks to covariance intersection, the algorithm is ap-
propriate for arbitrary graphs, and does not require any
bookkeeping, growing memory, buffering of measure-
ments, or reprocessing of data. At the same time, the ap-
proximation made by covariance intersection makes the
proposed method suboptimal, as it is well-known to be
overly conservative. Nevertheless, in the specific problems
shown in this paper, the results using CI have been satis-
factory provided that the fusion frequency is high enough,
and the communication graph is not too sparse. It is also
worth mentioning that the proposed algorithm still assumes
that process model inputs, whether in raw or preintegrated
form, have noise that is uncorrelated with the robot states,
just like the sensor measurement noise. These assumptions
must hold for a consistent estimator. In this paper, it is only
correlations between different robots’ states that are miti-
gated by covariance intersection.

One limitation of this proposed approach is that the
communication cost grows quadratically with the state size,
since the state covariance is also shared. While this is not an
issue for small state sizes, such as those representing 3D
poses, it could become a problem for states involving
multiple time steps or a very large number of robots.
Furthermore since this paper allows for variable state
definitions between robots, the state definition itself for each
robot may need to be communicated, or established a priori.

Figure 14. Position, velocity, and yaw RMSE for Robot three from one of the experimental trials. Since Robot 3 has no position
measurements, these quantities are unobservable without the fusion of pseudomeasurements.

Figure 15. The effect of preintegrated covariance autoencoding,
as described in Section 6.3, on the position estimate of Robot 1.
The two lines are almost identical, showing that the proposed
autoencoder induces minimal error on the estimate. All other states
have similar plots.
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The initial value of the state is also assumed to be known
through an arbitrary initialization procedure.

Future work can consider improving the approximation
made by CI and compressing the covariance matrix asso-
ciated with the state. Also, using the proposed MAP ap-
proach with pseudomeasurements, it should be possible to
derive decentralized batch and sliding-window estimators,
often termed smoothers, since these algorithms also orig-
inate from the MAP problem.
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