Charles Audet, Jean Bigeon, Romain Couderc et Michael Kokkolaras
Article de revue (2023)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (407kB) |
Abstract
This work considers stochastic optimization problems in which the objective function values can only be computed by a blackbox corrupted by some random noise following an unknown distribution. The proposed method is based on sequential stochastic optimization (SSO), i.e., the original problem is decomposed into a sequence of subproblems. Each subproblem is solved by using a zeroth-order version of a sign stochastic gradient descent with momentum algorithm (i.e., ZO-signum) and with increasingly fine precision. This decomposition allows a good exploration of the space while maintaining the efficiency of the algorithm once it gets close to the solution. Under the Lipschitz continuity assumption on the blackbox, a convergence rate in mean is derived for the ZO-signum algorithm. Moreover, if the blackbox is smooth and convex or locally convex around its minima, the rate of convergence to an E-optimal point of the problem may be obtained for the SSO algorithm. Numerical experiments are conducted to compare the SSO algorithm with other state-of-the-art algorithms and to demonstrate its competitiveness.
Mots clés
stochastic blackbox optimization; gradient approximation; sequential optimization; momentum-based method; convergence rate analysis
Sujet(s): |
2700 Technologie de l'information > 2713 Algorithmes 2950 Mathématiques appliquées > 2950 Mathématiques appliquées 3000 Statistique et probabilité > 3007 Processus stochastiques |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
Organismes subventionnaires: | IVADO Fundamental Research Projects, CRSNG / NSERC Alliance, Huawei-Canada |
Numéro de subvention: | PRF-2019-8079623546, t 544900-19 |
URL de PolyPublie: | https://publications.polymtl.ca/56693/ |
Titre de la revue: | AIMS Mathematics (vol. 8, no 11) |
Maison d'édition: | American Institute of Mathematical Sciences |
DOI: | 10.3934/math.20231321 |
URL officielle: | https://doi.org/10.3934/math.20231321 |
Date du dépôt: | 23 janv. 2024 17:00 |
Dernière modification: | 30 sept. 2024 11:18 |
Citer en APA 7: | Audet, C., Bigeon, J., Couderc, R., & Kokkolaras, M. (2023). Sequential stochastic blackbox optimization with zeroth-order gradient estimators. AIMS Mathematics, 8(11), 25922-25956. https://doi.org/10.3934/math.20231321 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions