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Research article
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Abstract: This work considers stochastic optimization problems in which the objective function
values can only be computed by a blackbox corrupted by some random noise following an unknown
distribution. The proposed method is based on sequential stochastic optimization (SSO), i.e., the
original problem is decomposed into a sequence of subproblems. Each subproblem is solved by
using a zeroth-order version of a sign stochastic gradient descent with momentum algorithm (i.e.,
ZO-signum) and with increasingly fine precision. This decomposition allows a good exploration of
the space while maintaining the efficiency of the algorithm once it gets close to the solution. Under
the Lipschitz continuity assumption on the blackbox, a convergence rate in mean is derived for the
ZO-signum algorithm. Moreover, if the blackbox is smooth and convex or locally convex around its
minima, the rate of convergence to an ε-optimal point of the problem may be obtained for the SSO
algorithm. Numerical experiments are conducted to compare the SSO algorithm with other state-of-
the-art algorithms and to demonstrate its competitiveness.

Keywords: stochastic blackbox optimization; gradient approximation; sequential optimization;
momentum-based method; convergence rate analysis
Mathematics Subject Classification: 65K05, 90C15, 90C30, 90C56, 90C90

1. Introduction

The present work targets stochastic blackbox optimization problems of the form

min
x∈Rn

f (x) where f (x) := Eξ
[
F(x, ξ)

]
, (1.1)
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and F : Rn × Rm → R is a blackbox [3] that takes two inputs: a vector of design variables x ∈ Rn and
a vector ξ ∈ Rm that represents uncertainties with unknown distributions. The function F is called a
stochastic zeroth-order oracle [20]. The objective function f is obtained by taking the expectation of F
over all possible values of the uncertainties ξ. This optimization problem can be found in two different
fields. The first is in a machine learning framework wherein the loss function’s gradient is unavailable
or difficult to compute, such as in the optimization of neural network architecture [36], design of
adversarial attacks [15] or game content generation [44]. The second field is when the function F is
evaluated by means of a computational procedure [27]. In many cases, it depends on an uncertainty
vector ξ due to environmental conditions, costs or effects of repair actions that are unknown [38].
Another source of uncertainty appears when the optimization is conducted at the early stages of the
design process, where knowledge, information and data are very limited.

1.1. Related work

Stochastic derivative-free optimization has been the subject of research for many years. Traditional
derivative-free methods may be divided into two categories [16]: direct search and model-based
methods. Algorithms corresponding to both methods have been adapted to a stochastic ZO oracle.
Examples include the stochastic Nelder-Mead algorithm [13] and the stochastic versions of the mesh
adaptive direct search algorithm [2, 4] for the direct search methods. For model-based methods, most
studies consider extensions of the trust region method [14, 17, 33]. A major shortcoming of these
methods is their difficulty to scale to large problems.

Recently, another class of methods, named ZO methods, has been attracting increasing amounts
of attention. These methods use stochastic gradient estimators, which are based on the seminal work
in [24,37], and they have been extended in [20,34,39,41]. These estimators have the appealing property
of being able to estimate the gradient with only one or two function evaluations, regardless of the
problem size. ZO methods take advantage of this property to extend first-order methods. For instance,
the well known first-order methods conditional gradient, sign stochastic gradient descent (signSGD) [6]
and adaptive momentum (ADAM) [26] have been extended to ZSCG [5], ZO-signSGD [30] and ZO-
adaMM [15], respectively. More methods, not only based on first-order algorithms, have also emerged
to solve regularized optimization problems [11], for very high dimensional blackbox optimization
problems [9] and stochastic composition optimization problems [21]. Methods using second-order
information based limited function queries have been developed [25]. Some methods handle situations
in which the optimizer has only access to a comparison oracle that indicates which of two points has
the highest value [10]. For an overview on ZO methods, readers may consult [31].

1.2. Motivation

Formally, stochastic gradient estimators involve a smooth approximation f β (see Chapter 7.6
in [39]) which is a convolution product between f and a kernel hβ(u)

f β(x) :=
∫ ∞

−∞

hβ(u) f (x − u)du =

∫ ∞

−∞

hβ(x − u) f (u)du. (1.2)

The kernel must fulfill a set of conditions [39, pp. 263]:

(1) hβ(u) = 1
βn h(u

β
) is a piecewise differentiable function;
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(2) limβ→0 hβ(u) = δ(u), where δ(v) is Dirac’s delta function;

(3) limβ→0 f β(x) = f (x) if x is a point of continuity of f ;

(4) The kernel hβ(u) is a probability density function, that is f β(x) = EU∼hβ(u)[ f (x−U)] = EU∼h(u)[ f (x−
βU)].

Frequently used kernels include the Gaussian distribution and the uniform distribution on a unit ball.
Three properties of the smooth approximation are worth noting. First, the smooth approximation
may be interpreted as a local weighted average of the function values in the neighborhood of x.
Condition 1.2 implies that it is possible to obtain a solution that is arbitrarily close to a local minimum
f ∗. Second, the smooth approximation is infinitely differentiable as a consequence of the convolution
product, regardless of the degree of smoothness of f . Moreover, according to the chosen kernel,
stochastic gradient estimators may be calculated. These estimators are unbiased estimators of ∇ f β and
may be constructed on the basis of observations of F(x, ξ) alone. Finally, the smooth approximation
allows convexification of the original function f . Previous studies [39, 42] show that greater values
of β result in better convexification, as illustrated in Figure 1. Additionally, a larger β leads to greater
exploration of the space during the calculation of the gradient estimator. It has also been demonstrated
in [32] that if the smoothing parameter is too small, the difference in function values cannot be used to
accurately represent the function differential, particularly when the noise level is significant.

Figure 1. Curves of f β for u ∼ N(0, 1) and different values of β.

Although the two first properties of the smooth approximation are exploited by ZO methods, the
last property has not been utilized since the work in [42]. This may be because the convexification
phenomenon becomes insignificant when dealing with high-dimensional problems ∗. However, for
problems of relatively small size (n ' 10), this property can be useful. The authors of [42] use an
iterative algorithm to minimize the sequence of subproblems

min
x∈Rn

f β
i
(x), (1.3)

∗Note that a blackbox optimization problem with dimensions ranging from 100 to 1000 may be considered large, while problems
with n ≥ 10000 may be considered very large.
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where βi belongs to a finite prescaled sequence of scalars. This approach is limited because the
sequence βi does not necessarily converge to 0 and the number of iterations to go from subproblem
i to i + 1 is arbitrarily fixed a priori. Furthermore, neither a convergence proof nor a convergence rate
are provided for the algorithm. Finally, although promising, numerical results are only presented for
analytical test problems. These shortcomings motivate the research presented here.

1.3. Contributions

The main contributions of this paper can be summarized as follows:

• A sequential stochastic optimization (SSO) algorithm is developed to solve the sequence of
subproblems in Eq (1.3). In the inner loop, a subproblem is solved according to the ZO version of
the signum algorithm [6]. The stopping criterion is based on the norm of the momentum, which
must be below a certain threshold. In the outer loop, the sequence of βi is proportional to the
threshold needed to consider a subproblem solved, and it is driven to 0. Therefore, the smaller the
value of βi (and thus better the approximation given by f β

i
), the larger the computational budget

allotted for the resolution of the subproblem.

• A theoretical analysis of this algorithm is conducted. First, the expectation of the norm of the
momentum is proved to converge to 0, with a convergence rate that depends on the step sizes.
Then, the convergence rate in mean of the ZO-signum algorithm toward a stationary point of f β

is derived under Lipschitz continuity of the function F. Finally, if the function F is smooth and
f β is convex or becomes convex around its local minima, the rate of convergence to an ε-optimal
point is derived for the SSO algorithm.

• Numerical experiments were conducted to evaluate the performance of the proposed algorithm
for two applications. First, a comparison is made with traditional derivative-free algorithms in
terms of the optimization of the storage cost of a solar thermal power plant model, which is a
low-dimensional problem. Second, a comparison is made with other ZO algorithms in order to
generate blackbox adversarial attacks, which are large-sized problems.

The remainder of this paper is organized as follows. In Section 2, the main assumptions and
the Gaussian gradient estimator are described. In Section 3, the sequential optimization algorithm
is presented, and its convergence properties are studied in Section 4. Section 5 presents numerical
results, and Section 6 draws conclusions and discusses future work.

2. Gaussian gradient estimator

The assumptions concerning the stochastic blackbox function F are as follows:

Assumption 1. Let (Ω,F ,P) be a probability space.

(a) The function satisfies F(·, ξ) ∈ L1(Ω,F ,P) and f (x) := Eξ[F(x, ξ)] for all x ∈ Rn.

(b) F(·, ξ) is Lipschitz-continuous for any fixed value of ξ = (ξ1, ξ2), with the constant L0(F) > 0,
that is

|F(x, ξ1) − F(y, ξ2)| ≤ L0(F)||x − y||.

AIMS Mathematics Volume 8, Issue 11, 25922–25956.
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Assumption 1(a) implies that the expectation of F(x, ξ) with respect to ξ is well defined on Rn

and that the estimator F(x, ξ) is unbiased. Assumption 1(b) is commonly used to ensure convergence
and bound the variance of the stochastic ZO oracle. It is worth noticing that no assumption is made
regarding the differentiability of the objective function f or of its estimate F with respect to x, contrary
to most work on ZO methods.

Under Assumption 1, a smooth approximation of the function f may be constructed via its
convolution with a Gaussian random vector. Let u be an n-dimensional standard Gaussian random
vector and β > 0 be the smoothing parameter. Then, a smooth approximation of f is defined as

f β(x) :=
1

(2π)
n
2

∫
f (x + βu)e−

||u||2
2 du = Eu[ f (x + βu)]. (2.1)

This estimator has been studied in the literature (especially in [34]); it has the benefits of several
appealing properties. The properties used in this work are summarized in the following lemma:

Lemma 2.1. Under Assumption 1, the following statements hold for any integrable function f : Rn →

R and its approximation f β parameterized by β > 0.

(1) f β is infinitely differentiable: f β ∈ C∞.

(2) A one-sided unbiased estimator of ∇ f β is

∇̃ f β(x) :=
u( f (x + βu) − f (x))

β
. (2.2)

(3) Let β2 ≥ β1 ≥ 0; then, ∀x ∈ Rn

||∇ f β
1
(x) − ∇ f β

2
(x)|| ≤ L1( f β

1
)(β2 − β1)(n + 3)

3
2 .

Moreover, for β > 0, f β is L1( f β)-smooth, i.e., f β ∈ C1+ with L1( f β) =
2
√

n
β

L0(F).

(4) If f is convex, then f β is also convex.

Proof. (1) It is a consequence of the convolution product between an integrable function and an
infinitely differentiable kernel.

(2) See [34, Eq (22)].
(3) If u ∼ N(0, I), define the following for all x ∈ Rn

g(x) = f β
1
(x) = Eu[ f (x + β1u)].

Let µ = β2 − β1 ≥ 0; it follows that for all x ∈ Rn

gµ(x) = Eu[g(x + µu)] = Eu[ f β
1
(x + µu)] = Eu[ f (x + µu + β1u)] = Eu[ f (x + β2u)] = f β

2
(x).

Then, since by [34, Lemma 2] under Assumption 1, f β
1

is Lipschitz continuously differentiable, [34,
Lemma 3] may be applied to the function g and it follows that

||∇ f β
1
(x) − ∇ f β

2
(x)|| = ||∇g(x) − ∇gµ(x)|| ≤ L1( f β

1
)µ(n + 3)

3
2 = L1( f β

1
)(β2 − β1)(n + 3)

3
2 .

(4) See [34, pp. 5]. �
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The estimator obtained in Eq (2.2) may be adapted to the stochastic ZO oracle F. For instance, a
one-sided (mini-batch) estimator of the noised function F is

∇̃ f β(x, ξ) =
1
q

q∑
j=1

u j(F(x + βu j, ξ j) − F(x, ξ0))
β

, (2.3)

where {u j}
q
j=1 and {ξ j}

q
j=0 are q Gaussian random directional vectors and their associated q estimate

values of the function F, respectively. This is still an unbiased estimator of ∇ f β because

Eu,ξ[∇̃ f β(x, ξ)] = Eu[Eξ[∇̃ f β(x, ξ)|u]] = ∇ f β(x). (2.4)

The result of Lemma 2.1(3) is essential to understand why solving a sequence of optimization
problems defined by Eq (1.3) may be efficient, although it might seem counterproductive at first sight.
Below are examples of the advantages of treating the problem with sequential smoothed function
optimization.

• The subproblems are approximations of the original problem and it is not necessary to solve
them exactly. Thus, an appropriate procedure for solving these problems with increasingly fine
precision can be used. Moreover, as seen in Lemma 2.1(3), the norm of the gradient obtained in
a subproblem is close to the one of the following subproblem. The computational effort to find a
solution to the second subproblem from the solution of the first should therefore not be important.

• The information collected during the optimization process for a subproblem may be reused in the
subsequent subproblems since they are similar.

• A specific interest in the case of smooth approximation is the ability of using a larger value of β
to solve the first subproblems. It allows for a better exploration of the space and convexification
phenomenon of the function (see Figure 1). Moreover, the new step size may be used for each
subproblem; it allows for an increase in the step size momentarily, in the hope of having a greater
chance of escaping a local minimum.

3. SSO algorithm

Section 3.1 presents a ZO version of the signum algorithm [6] to solve Subproblem (1.3) for a given
βi and Section 3.2 presents the complete algorithm used to solve the sequential optimization problem.

3.1. The ZO signum algorithm

A ZO version of the signum algorithm (Algorithm 2 of [6]) is used to solve the subproblems. The
signum algorithm is a momentum version of the sign-SGD algorithm. In [30], the authors extended
the original sign-SGD algorithm to a ZO version of this algorithm. However, a ZO version of signum
is not studied in the work of [30]. As the signum algorithm has been shown to be competitive with the
ADAM algorithm [6], a ZO version of this algorithm seems interesting to consider. For completeness,
the versions of the sign-SGD and the signum algorithms as they originally appeared in [6] are given
in Appendix 6. There is an important difference between the original signum algorithm and its ZO
version presented in Algorithm 1. Indeed, while the step size of the momentum 1 − s2 is kept constant
in the work of [6], it is driven to 0 in our work.

AIMS Mathematics Volume 8, Issue 11, 25922–25956.



25928

Algorithm 1 ZO-signum algorithm to solve subproblem i ∈ N.

1: Input: xi,0,mi,0, βi, si,0
1 , s

i,0
2 , L, q, M

2: Set k = 0
3: Define step-size sequences si,k

1 =
si,0

1
(k+1)α1 and si,k

2 =
si,0

2
(k+1)α2

4: while ||mi,k|| > Lβi

4β0 or k ≤ M do
5: Draw q samples uk from the Gaussian distribution N(0, I)
6: Calculate the average of the q Gaussian estimate ∇̃ f β

i
(xi,k, ξi,k) from Eq (2.3)

7: Update:

mi,k+1 = si,k
2 ∇̃ f β

i
(xi,k, ξk) + (1 − si,k

2 )mi,k (3.1)

xi,k+1
j = xi,k

j − sk
1sign(mi,k+1

j ) ∀ j ∈ [1, n] (3.2)

8: k ← k + 1
9: end while

10: Return mi,k and xi,k

This leads to two consequences. First, the variance is reduced since the gradient is averaged on
a longer time horizon, without using mini-batch sampling. Second, as it has been demonstrated in
other stochastic approximation works ( [7, Section 3.3] and [40]), with carefully chosen step sizes the
norm of the momentum goes to 0 with probability one. In the ZO-signum algorithm, the norm of the
momentum is thus used as a stopping criterion.

3.2. The SSO algorithm

The optimization of the subproblem sequence described in Eq (1.3) is driven by the SSO algorithm
presented in Algorithm 2. The value of β plays a critical role, as it serves as both the smoothing
parameter and the stopping criterion for Algorithms 1 and 2. Algorithm 2 is inspired by the MADS
algorithm [1] as it is based on two steps: a search step and a local step. The search step is optional, may
use any heuristics and is required only for problems with relatively small dimensions. In Algorithm 2,
an example of a search is given; it consists of updating x after M iterations of the ZO-signum algorithm
with the best known x found so far. The local step is then used: Algorithm 1 is launched for each
subproblem i with specific values of βi and step-size sequences. Once Algorithm 1 meets the stopping
criterion (which depends on the value of βi), the value of βi and the initial step-sizes si,0

1 and si,0
2 are

reduced, and the algorithm proceeds to the next subproblem. The convergence is guaranteed by the
local step, since the search step is run only a finite number of times.

It is worth noting that the decreasing rate of βi is chosen so that the difference between subproblems i
and i+1 is not significant. Therefore, the information collected in subproblem i, through the momentum
vector m, can be used in subproblem i + 1. Furthermore, the initial step sizes si,0

1 and si,0
2 decrease with

each iteration, allowing us to focus our efforts quickly toward a local optimum when s0,0
1 and β0 are

chosen to be relatively large.
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Algorithm 2 SSO algorithm.
1: Initialization:
2: Set x0,0 ∈ Rn, β0 > 0 and N as the maximum number of function calls for the search step
3: Set q as the number of gradient estimates at each iteration of ZO-signum (ZOS) algorithm
4: Set M the minimum number of iterations made by the ZOS algorithm on a subproblem
5: C is the cache containing all of the evaluated points
6: Set m0,0 = ∇̃ f β

0
(x0,0, ξ0) and L = +∞

7: Set s0,0
1 > 0 and s0,0

2 > 0
8: Set i = 0
9: Search step (optional):

10: while M(i + 1)q ≤ N: do
11: Solve subproblem i with Algorithm 1:

mi+1,0 = ZOS (xi,0,mi,0, βi, si,0
1 , s

i,0
2 , L, q,M)

xi+1,0 ∈ argmin
x∈C

F(x, ξ)

12: Update βi, si,0
1 and si,0

2 as in Step 18
13: end while
14: L = ||m0,0||

15: Local step:
16: while βi > ε do
17: Solve subproblem i with Algorithm 1:

mi+1,0, xi+1,0 = ZOS (xi,0,mi,0, βi, si,0
1 , s

i,0
2 , L, q,M)

18: Update:

βi =
β0

(i + 1)2 , s
i,0
1 =

s0,0
1

(i + 1)
3
2

, si,0
2 =

s0,0
2

i + 1

i← i + 1

19: end while
20: Return xi

4. Convergence analysis

The convergence analysis is conducted in two steps: first the convergence rate in mean is derived
for Algorithm 1 and then the rate of convergence to an ε-optimal point is derived for Algorithm 2.

4.1. Convergence rate of the ZO-signum algorithm

The analysis of Algorithm 1 follows the general methodology given in [6, Appendix E]. In the
following subsection, the main result in [6] is recalled for completeness. The next subsections are
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devoted to bound the variance and bias terms when limk→∞ si,k
2 = 0 . Finally, these results are used

to obtain the convergence rate in mean of Algorithm 1 in the non-convex and convex case. The
last subsection is devoted to a theoretical comparison with other ZO methods of the literature. The
subproblem index i is kept constant throughout this section. In order to better convey the convergence
analysis of the ZO-signum algorithm, a hierarchical workflow of the different theoretical results is
presented in Table 1. The main results are presented in Theorem 4.1 and its corollary for the non-
convex case, and Theorem 4.2 for the convex case.

Table 1. Workflow of lemmas/propositions/theorems for the ZO-signum convergence
analysis.

Assumptions on F Preliminary results Intermediate results Main results When f β is convex
Proposition 4.1

Assumption 1
Lemma 4.1

Proposition 4.2
which implies that

Lemma 4.2
Theorem 4.1 Theorem 4.2

L1( f β
i
) =

2
√

nL0(F)
βi

Lemma 4.3
Corollary 4.1

Lemma 4.4
Proposition 4.3

Lemma 4.5

4.1.1. Preliminary result [6]

The following proposition uses the Lipschitz continuity of the function f β
i
(proved in Lemma 2.1)

to bound the gradient at the kth iteration.

Proposition 4.1. [6] For the subproblem i ∈ N, under Assumption 1 and in the setting of Algorithm 1,
we have

si,k
1 E[||∇ f β

i
(xi,k)||1] ≤ E[ f β

i
(xi,k) − f β

i
(xi,k+1)] +

nL1( f β
i
)

2
(si,k

1 )2

+ 2si,k
1 E[||m̄i,k+1 − ∇ f β

i
(xi,k)||1]︸                         ︷︷                         ︸

bias

+2si,k
1

√
n
√
E[||mi,k+1 − m̄i,k+1||22]︸                    ︷︷                    ︸

variance

,
(4.1)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k
2 ∇ f β

i
(xi,k) + (1 − si,k

2 )m̄i,k
j .

Proof. See Appendix B. �

Now, it remains to bound the three terms on the right side of Inequality (4.1).

4.1.2. Bound on the variance term

The three following lemmas are consecrated to bound the variance term. Unlike the work reported
in [6], the variance reduction is conducted by driving the step size of the momentum to 0. It avoids
the need to sample an increasing number of stochastic gradients at each iteration, which may be
problematic, as noted in [30]. To achieve this, the variance term is first decomposed in terms of
expectation of the squared norm of the stochastic gradient estimators g̃.

AIMS Mathematics Volume 8, Issue 11, 25922–25956.
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Lemma 4.1. For the subproblem i ∈ N, let k ∈ N and j ∈ [1, n]; we have

E[||mi,k+1 − m̄i,k+1||2] ≤ (si,k
2 )2E[||g̃i,k||2] +

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2E[||g̃i,r||2] +

k∏
t=0

(1 − si,t
2 )2E[||g̃i,0||2],

where g̃i,r
j = ∇̃ f β

i
(xi,r, ξr),∀r ∈ [0, k] is defined in Eq (2.3) and the norm is || · ||2.

Proof. Let k ∈ N; by definition of mi,k and m̄i,k, it follows that

||mi,k+1 − m̄i,k+1||2 = (si,k
2 )2||g̃i,k − ∇ f β

i
(xi,k)||2 + (1 − si,k

2 )2||mi,k − m̄i,k||2

+ 2si,k
2 (1 − si,k

2 )(g̃i,k − ∇ f β
i
(xi,k))T (mi,k − m̄i,k).

The expectation of this expression is

E[||mi,k+1 − m̄i,k+1||2] = (si,k
2 )2E[||g̃i,k − ∇ f β

i
(xi,k)||2] + (1 − si,k

2 )2E[||mi,k − m̄i,k||2]

+ 2si,k
2 (1 − si,k

2 )E[(g̃i,k − ∇ f β
i
(xi,k))T (mi,k − m̄i,k)]. (4.2)

Now, introducing the associated sigma field of the process F i,k = σ(x j,t,m j,t, m̄ j,t; j ≤ i, t ≤ k) by the
law of total expectation, it follows that

E[(g̃i,k − ∇ f β
i
(xi,k))T (mi,k − m̄i,k)] = E[E[(g̃i,k − ∇ f β

i
(xi,k))T (mi,k − m̄i,k)|F i,k]]

= E[(E[g̃i,k|F i,k] − ∇ f β
i
(xi,k))T (mi,k − m̄i,k)]

= 0,

where the second equality holds because mi,k, m̄i,k and ∇ f β
i
(xi,k) are fixed conditioned on F i,k and

because E[g̃i,k|xi,k] = ∇ f β
i
(xi,k) where g̃i,k is an unbiased estimator of the gradient by Eq (2.4). By

substituting this result in (4.2), it follows that

E[||mi,k+1 − m̄i,k+1||2] = (si,k
2 )2E[||g̃i,k − ∇ f β

i
(xi,k)||2] + (1 − si,k

2 )2E[||mi,k − m̄i,k||2].

By repeating this process iteratively, we obtain

E[||mi,k+1 − m̄i,k+1||2] = (si,k
2 )2E[||g̃i,k − ∇ f β

i
(xi,k)||2]

+

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2E[||g̃i,r − ∇ f β

i
(xi,r)||2]

+

k∏
t=0

(1 − si,t
2 )2E[||g̃i,0 − ∇ f β

i
(xi,0)||2].

(4.3)

Finally, by observing that ∀r ∈ [0, k],E[g̃i,r|xi,r] = ∇ f β
i
(xi,r) and by the law of total expectation, we

obtain

E[||g̃i,r − ∇ f β
i
(xi,r)||2] = E[||g̃i,r − E[g̃i,r|xi,r]||2]

= E[||g̃i,r||2] − E[||∇ f β
i
(xi,r)||2]

≤ E[||g̃i,r||2].

Introducing this inequality to Eq (4.3) completes the proof. �
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Second, the expectation of the squared norm of the stochastic gradient estimators are bounded by a
constant depending quadratically on the dimension.

Lemma 4.2. Let i ∈ N, r ∈ [0, k] and j ∈ [1, n]; then under Assumption 1, we have

E[||g̃i,r||2] ≤ L0(F)2(n + 4)2,

where L0(F) is the Lipschitz constant of F.

Proof. By Eq (2.3) with q = 1, it follows that

E[||g̃i,r||2] = E

[
||u||2

(βi)2

(
F(xi,r + βiu, ξ1) − F(xi,r, ξ0)

)2
]

≤ L0(F)2E[||u||4]
≤ L0(F)2(n + 4)2

where the first inequality follows from Assumption 1(b) and the second by [34, Lemma 1]. �

Finally, a technical lemma bounds the second term of the decomposition of Lemma 4.1 by a
decreasing sequence. It achieves the same rate of convergence as in [6] without sampling any stochastic
gradient.

Lemma 4.3. For the subproblem i ∈ N, let si,k
2 be defined such that si,k

2 =
si,0

2
(k+1)α2 with α2 ∈ (0, 1) and

si,0
2 ∈ (0, 1); then, for k such that

k
(k + 1)α2

≥
ln(si,0

2 ) + (1 + α2) ln(k)

si,0
2

, (4.4)

the following inequality holds
k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2 ≤

9si,0
2

kα2
. (4.5)

Proof. Let k ∈ N; as in [6], the strategy consists of breaking up the sum in order to bound both terms
separately.

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2 =

bk/2c−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2 +

k−1∑
r=bk/2c

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2

≤ (1 − si,k
2 )2bk/2c

bk/2c−1∑
r=0

(si,r
2 )2 + (si,bk/2c−1

2 )2
k−1∑

r=bk/2c

(1 − si,k
2 )2(k−r−1)

≤ (si,0
2 )2bk/2c(1 − si,k

2 )2bk/2c +
8(si,0

2 )2

k2α2

bk/2c∑
r=0

(1 − si,k
2 )2r

≤ (si,0
2 )2k(1 − si,k

2 )2bk/2c +
8(si,0

2 )2

k2α2(1 − (1 − si,k
2 )2)
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≤ (si,0
2 )2k(1 − si,k

2 )2bk/2c +
8si,0

2

kα2(2 − si,k
2 )
.

Now, we are looking for k such that

si,0
2 k(1 − si,k

2 )2bk/2c ≤
1

kα2
⇔ e2bk/2c ln(1−si,k

2 ) ≤
1

(si,0
2 )k1+α2

.

As, ln(1 − x) ≤ −x, it is sufficient to find k such that

e−si,0
2

k
(k+1)α2 ≤

1

(si,0
2 )k1+α2

⇔
k

(k + 1)α2
≥

ln(si,0
2 ) + (1 + α2) ln(k)

si,0
2

.

Taking such a k allows us to complete the proof. �

Combining the three previous lemmas allows the bounding of the variance term in Proposition 4.1.

Proposition 4.2. In the setting of Lemmas 4.2 and 4.3 and under Assumption 1(b), the variance term
of Proposition 4.1 is bounded by

E[||mi,k+1 − m̄i,k+1||22] ≤
9si,0

2 L0(F)2(n + 4)2

kα2
+ o

(
1

kα2

)
.

Proof. By Lemmas 4.1 and 4.2, it follows that

E[||mi,k+1 − m̄i,k+1||2] ≤ (si,k
2 )2E[||g̃i,k||2] +

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2E[||g̃i,r||2] +

k∏
t=0

(1 − si,t
2 )2E[||g̃i,0||2]

≤

(si,k
2 )2 +

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1 − si,t+1
2 )2 +

k∏
t=0

(1 − si,t
2 )2

 L0(F)2(n + 4)2.

Now as (si,k
2 )2 = o

(
1

kα2

)
and

∏k
t=0(1 − si,t

2 )2 = o
(

1
kα2

)
, the result follows from Lemma 4.3. �

4.1.3. Bound on the bias term

First, the bias term is bounded by a sum depending on sk
1 and sk

2.

Lemma 4.4. For the subproblem i ∈ N and at iteration k ∈ N of the Algorithm 1, we have

E[||m̄i,k+1 − ∇ f β
i
(xi,k)||1] ≤ 2nL1( f β

i
)

 k−1∑
l=0

si,l
1

k−1∏
t=l

(1 − si,t+1
2 )

 .
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Proof. Foremost, observe that the quantity

S i,k :=
{

1, if k = 0,
si,k

2 +
∑k−1

r=0 si,r
2

∏k−1
t=r (1 − si,t+1

2 ) +
∏k

t=0(1 − si,t
2 ), otherwise,

(4.6)

may be written recursively as

S i,k =

{
1, if k = 0,
si,k

2 + (1 − si,k
2 )S i,k−1, otherwise.

Note that in its second expression S i,k = 1 for all k. Therefore, by definition of m̄i,k
j and the previous

result on S i,k, it follows that

m̄i,k = si,k
2 ∇ f β

i
(xi,k) +

k−1∑
r=0

si,r
2

k−1∏
t=r

(1 − si,t+1
2 )∇ f β

i
(xi,r) +

k∏
t=0

(1 − si,t
2 )∇ f β

i
(xi,0),

∇ f β
i
(xi,k) =

si,k
2 +

k−1∑
r=0

si,r
2

k−1∏
t=r

(1 − si,t+1
2 ) +

k∏
t=0

(1 − si,t
2 )

∇ f β
i
(xi,k).

Thus

E[||m̄i,k+1 − ∇ f β
i
(xi,k)||1] ≤

k−1∑
r=0

si,r
2

k−1∏
t=r

(1 − si,t+1
2 )E[||∇ f β

i
(xi,r) − ∇ f β

i
(xi,k)||1]

+

k∏
t=0

(1 − si,t
2 )E[||∇ f β

i
(xi,0) − ∇ f β

i
(xi,k)||1].

(4.7)

By the smoothness of the function f β
i
, Lemma F(3) of [6] ensures that ∀r ∈ [0, k − 1]

||∇ f β
i
(xi,r) − ∇ f β

i
(xi,k)||1 ≤

k−1∑
l=r

||∇ f β
i
(xi,l+1) − ∇ f β

i
(xi,l)||1 ≤ 2nL1( f β

i
)

k−1∑
l=r

si,l
1 .

Substituting this inequality into Eq (4.7) gives

E[||m̄i,k+1 − ∇ f β
i
(xi,k)||1] ≤ 2nL1( f β

i
)S i,k

1 , (4.8)

where

S i,k
1 =

k−1∑
r=0

si,r
2

k−1∑
l=r

si,l
1

k−1∏
t=r

(1 − si,t+1
2 ) +

k−1∑
l=0

si,l
1

k∏
t=0

(1 − si,t
2 ).

Reordering the terms in S k
1, we obtain

S i,k
1 =

k−1∑
l=0

si,l
1

 l∑
r=0

si,r
2

k−1∏
t=r

(1 − si,t+1
2 ) +

k∏
t=0

(1 − si,t
2 )


=

k−1∑
l=0

si,l
1

si,l
2

k−1∏
t=l

(1 − si,t+1
2 ) +

l−1∑
r=0

si,r
2

k−1∏
t=r

(1 − si,t+1
2 ) +

k∏
t=0

(1 − si,t
2 )


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=

k−1∑
l=0

si,l
1

k−1∏
t=l

(1 − si,t+1
2 )

si,l
2 +

l−1∑
r=0

si,r
2

l−1∏
t=r

(1 − si,t+1
2 ) +

l∏
t=0

(1 − si,t
2 )

︸                                                  ︷︷                                                  ︸
S i,l=1

=

k−1∑
l=0

si,l
1

k−1∏
t=l

(1 − si,t+1
2 ),

which completes the proof. �

Second, the sum may be bounded by a term decreasing with k.

Lemma 4.5. For the subproblem i ∈ N, let si,k
2 =

si,0
2

(k+1)α2 and si,k
1 =

si,0
1

(k+1)α1 with si,0
1 ∈ (0, 1), si,0

2 ∈ (0, 1)
and 0 < α2 < α1 < 1; then, for k such that

k
(k + 1)α2

≥
2
(
ln(si,0

2 ) + (1 + α1 − α2) ln(k)
)

si,0
2

, (4.9)

the following inequality holds
k−1∑
l=0

si,l
1

k−1∏
t=l

(1 − si,t+1
2 ) ≤

5si,0
1

si,0
2 kα1−α2

. (4.10)

Proof. The proof follows the proof of Lemma 4.3. The sum is partitioned as follows:
k−1∑
l=0

si,l
1

k−1∏
t=l

(1 − si,t+1
2 ) =

bk/2c−1∑
l=0

si,l
1

k−1∏
t=l

(1 − si,t+1
2 ) +

k−1∑
l=bk/2c−1

si,l
1

k−1∏
t=l

(1 − si,t+1
2 )

≤ (1 − si,k
2 )bk/2c

bk/2c−1∑
l=0

si,l
1 + si,bk/2c−1

1

k−1∑
l=bk/2c−1

(1 − si,k
2 )k−r−1

≤ si,0
1 k(1 − si,k

2 )bk/2c +
4si,0

1

kα1(1 − (1 − si,k
2 ))

=
si,0

1 si,0
2 k(1 − si,k

2 )bk/2c

si,0
2

+
4si,0

1

si,0
2 kα1−α2

.

Now, as in Lemma 4.3 taking k such that

k
(k + 1)α2

≥
2
(
ln(si,0

2 ) + (1 + α1 − α2) ln(k)
)

si,0
2

ensures that si,0
2 k(1 − si,k

2 )bk/2c ≤ 1
kα1−α2 , which completes the proof. �

Finally, using the two previous lemmas allows for bounding of the bias term.

Proposition 4.3. In the setting of Lemma 4.5, the bias term of Proposition 4.1 is bounded by

E[||m̄i,k+1 − ∇ f β
i
(xi,k)||1] ≤ 10nL1( f β

i
)

si,0
1

si,0
2 kα1−α2

.

Proof. The proof is a straightforward consequence of Lemmas 4.4 and 4.5. �
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4.1.4. Convergence rate in mean of the ZO-signum algorithm

As the different terms in the inequality of Proposition 4.1 have been bounded, the main result of this
section may be derived as in the following theorem.

Theorem 4.1. For a subproblem i ∈ N and under Assumption 1, let α1 ∈ (0, 1), α2 ∈ (0, α1), 0 < si,0
1 ,

si,0
2 < 1 and K > C where C ∈ N satisfies Eqs (4.4) and (4.9); we have

E[||∇ f β
i
(xi,R)||1] ≤

1
K1−α1 − C

Kα1

(Di
f

si,0
1

+
n
√

nL0(F)si,0
1

βi

K∑
k=C

1
k2α1

+ 6
√

si,0
2 L0(F)

√
n(n + 4)

K∑
k=C

1

kα1+
α2
2

+
40L0(F)si,0

1 n
√

n

si,0
2 β

i

K∑
k=C

1
k2α1−α2

)
,

(4.11)

where f β
i
(xi,C) −minx f β

i
(x) ≤ Di

f , L0(F) is the Lipschitz constant of F and R is randomly picked from
a uniform distribution in [C,K].

Proof. Let C ∈ N satisfy Eqs (4.4) and (4.9) and, summing over the inequality in Proposition 4.1, it
follows that

K∑
k=C

si,k
1 E[||∇ f β

i
(xi,k)||1] ≤ E[ f β

i
(xi,C) − f β

i
(xi,K+1)] +

nL1( f β
i
)

2

K∑
k=C

(si,k
1 )2

+ 2
√

n
K∑

k=C

si,k
1

√
E[||mi,k+1 − m̄i,k+1||22] + 2

K∑
k=C

si,k
1 E[||m̄i,k+1 − ∇ f β

i
(xi,k)||1].

By substituting the results of Propositions 4.2 and 4.3 in the previous inequality, we obtain

K∑
k=C

si,k
1 E[||∇ f β

i
(xi,k)||1] ≤ E[ f β

i
(xi,C) − f β

i
(xi,K+1)] +

nL1( f β
i
)

2

K∑
k=C

(si,k
1 )2

+ 6
√

si,0
2 L0(F)(n + 4)

√
n

K∑
k=C

si,0
1

kα1+
α2
2

+
20L1( f β

i
)si,0

1 n

si,0
2

K∑
k=C

si,0
1

k2α1−α2
.

Dividing both sides by si,0
1 K−α1(K−C), picking R randomly uniformly in [C,K] and using the definition

of Di
f given that minx f (x) ≤ f (x) for all x, we get

E[||∇ f β
i
(xi,R)||1] =

1
K −C

K∑
k=C

E[||∇ f β
i
(xi,k)||1] ≤

1
K −C

K∑
k=C

Kα1

kα1
E[||∇ f β

i
(xi,k)||1]

≤
1

K1−α1 − C
Kα1

(Di
f

si,0
1

+
nL1( f β

i
)si,0

1

2

K∑
k=C

1
k2α1

+ 6
√

si,0
2 L0(F)(n + 4)

√
n

K∑
k=C

1

kα1+
α2
2

+
20L1( f β

i
)si,0

1 n

si,0
2

K∑
k=C

1
k2α1−α2

)
.

Recalling that L1( f β
i
) =

2
√

nL0(F)
βi (see [34, Lemma 2]) completes the proof. �
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This theorem allows one to prove the convergence rate in mean of the norm of the gradient when
α1 and α2 are chosen adequately. In particular, the following corollary provides the convergence rate
when α1 = 3

4 and α2 = 1
2 .

Corollary 4.1. Under the same setting of Theorem 4.1 with βi ≈ 1 α1 = 3
4 , α2 = 1

2 , si,0
1 = 1

n
3
4

and

si,0
2 ≈ 1, we have

E[||∇ f β
i
(xi,R)||2] = O

 n
3
2

K1/4 ln(K)
 . (4.12)

Proof. The result is a direct consequence of Theorem 4.1 with the specified constant, and it can be
obtained by noting that || · ||2 ≤ || · ||1 in Rn. �

In [15, 20, 30], the function F is assumed to be smooth with a Lipschitz continuous gradient. In the
present work, F is only assumed to be Lipschitz continuous. This has two main consequences on the
result of convergence: the dependence of the dimension on the convergence rate is larger. Furthermore,
while β must be chosen relatively small in the smooth case, it is interesting to note that it does not have
to be this way in the nonsmooth case.

4.1.5. The convex case

The convergence rate results for the ZO-signum algorithm has been derived in the non-convex case.
In the next theorem, they are derived for the case when the function f β

i
is convex.

Theorem 4.2. Under Assumption 1, suppose moreover that f β
i

is convex and there exists ρ such that
ρ = maxk∈N ||xi,k − xi,∗||; then, by setting

si,k
1 =

2ρ
(k + 1)

, si,k
2 =

1

(k + 1)
2
3

and Γk :=
k∏

l=2

(
1 −

2
k + 1

)
=

2
k(k + 1)

with Γ1 = 1, (4.13)

it follows that

E[ f β
i
(xi,K) − f β

i
(x∗)] ≤

4ρ2n
√

nL0(F)

βiK
1
3

(4.14)

and

E[||∇ f β
i
(xi,R)||] ≤

2L0(F)
K2 +

4ρn
√

nL0(F)

βiK
1
3

, (4.15)

where R is a random variable in [0,K − 1] whose the probability distribution is given by

P(R = k) =
si,k

1 /Γ
k+1∑K−1

k=0 si,k
1 /Γ

k+1
.

Proof. Under the assumptions in the statement of Theorem 4.2, it follows by Proposition 4.1 that

E[ f β
i
(xi,k+1) − f β

i
(xi,∗)] ≤ E[ f β

i
(xi,k) − f β

i
(xi,∗)] − si,k

1 E[||∇ f β
i
(xi,k)||] +

nL1( f β
i
)

2
(si,k

1 )2

+ 2si,k
1 E[||m̄i,k+1 − ∇ f β

i
(xi,k)||1] + 2si,k

1

√
n
√
E[||mi,k+1 − m̄i,k+1||2]

≤ E[ f β
i
(xi,k) − f β

i
(xi,∗)] − sk

1E[||∇ f β
i
(xi,k)||] +

4ρ2n
√

nL0(F)

βi(k + 1)
4
3

,

(4.16)
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where the last inequality follows thanks to Propositions 4.2 and 4.3 with L1( f β
i
) =

2L0(F)
√

n
βi and the

values of si,k
1 and si,k

2 . Now, by convexity assumption of f β
i
and the bound ρ, the following holds

f β
i
(xi,k) − f β

i
(xi,∗) ≤ ∇ f β

i
(xi,k)T (xi,k − xi,∗)

≤ ||∇ f β
i
(xi,k)|| ||xi,k − xi,∗||

≤ ρ||∇ f β
i
(xi,k)||.

Thus, by substituting this result into Eq (4.16), it follows that

E[ f β
i
(xi,k+1) − f β

i
(xi,∗)] ≤

(
1 −

2
(k + 1)

)
E[ f β

i
(xi,k) − f β

i
(xi,∗)] +

4ρ2n
√

nL0(F)

βi(k + 1)
4
3

.

Now by dividing both sides of the equation by Γk+1 and summing up the inequalities, it follows that

E[ f β
i
(xi,K) − f β

i
(xi,∗)]

ΓK ≤
4ρ2n

√
nL0(F)
βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3

≤
4ρ2n

√
nL0(F)
βi

K−1∑
k=0

(k + 1)
2
3 .

Thus

E[ f β
i
(xi,K) − f β

i
(xi,∗)] ≤

4ρ2n
√

nL0(F)
βi ΓK

K−1∑
k=0

(k + 1)
2
3 ≤

4ρ2n
√

nL0(F)

βiK
1
3

.

Now, the second part of the proof may be demonstrated. By Eq (4.16), it also follows that

si,k
1 E[||∇ f β

i
(xi,k)||] ≤ E[ f β

i
(xi,k) − f β

i
(xi,∗)] − E[ f β

i
(xi,k+1) − f β

i
(xi,∗)] +

4ρ2n
√

nL0(F)

βi(k + 1)
4
3

.

As in the previous part, by dividing both sides by Γk+1, summing up the inequalities and noting that
f̄ k = E[ f β

i
(xi,k) − f β

i
(xi,∗)], we obtain

K−1∑
k=0

si,k
1

Γk+1E[||∇ f β
i
(xi,k)||] ≤

K−1∑
k=0

f̄ k − ¯f k+1

Γk+1 +
4ρ2n

√
nL0(F)
βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3

.

Then, again by dividing both sides by
∑K−1

k=0
si,k

1
Γk+1 it follows that

E[||∇ f β
i
(xi,R)||] =

∑K−1
k=0

si,k
1

Γk+1E[||∇ f β
i
(xi,k)||]∑K−1

k=0
si,k

1
Γk+1

≤
1∑K−1

k=0
si,k

1
Γk+1

K−1∑
k=0

E[ f̄ k − ¯f k+1]
Γk+1 +

4ρ2n
√

nL0(F)
βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3

 ,
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where R is a random variable whose distribution is given in the statement of the theorem. Now, as in
Eq (2.21) of [5], the following inequalities hold

K−1∑
k=0

f̄ k − ¯f k+1

Γk+1 ≤ f̄ 0 +

K−1∑
k=1

2
Γk+1(k + 1)

f̄ k and
K−1∑
k=0

si,k
1

Γk+1 =
ρ

ΓK .

Thus, by substituting these in the inequality involving the expectation, we obtain

E[||∇ f β
i
(xi,R)||] ≤

ΓK

ρ

E[ f̄ 0] +

K−1∑
k=1

2
Γk+1(k + 1)

E[ f̄ k] +
4ρ2n

√
nL0(F)
βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3


≤

ΓK

ρ

E[ f̄ 0] +
8ρn
√

nL0(F)
βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3


≤

2L0(F)
K2 +

8ρn
√

nL0(F)

βiK
1
3

,

where the second inequality follows from Eq (4.14). �

4.1.6. Summary of convergence rates and complexity guarantees

The result obtained in Eq (4.12) is consistent with the convergence results of other ZO methods.
To gain a better understanding of its performance, this result is compared with those of four other
algorithms from different perspectives: the assumptions, the measure used, the convergence rate and
the function query complexity. All methods seek a solution to a stochastic optimization problem; the
comparison is presented in Table 2. Since the convergence rates of the ZO-signum and ZO-signSGD
algorithms are measured by using ||∇ f (x)||, although ||∇ f (x)||2 is used for ZO-adaMM and ZO-SGD,
Jensen’s inequality is used to rewrite the convergence rates in terms of the gradient norm.

• for ZO-SGD [20]

E[||∇ f (x)||] ≤
√
E[||∇ f (x)||2] ≤

√
O

(
σ
√

n
√

K
+

n
K

)
≤ O

 √σn
1
4

K
1
4

+

√
n
√

K

 ;

• for ZO-adaMM [15]

E[||∇ f (x)||] ≤
√
E[||∇ f (x)||2] ≤

√
O

((
n
√

K
+

n2

K

) √
ln(K) + ln(n)

)
≤ O

(( √
n

K
1
4

+
n
√

K

)
(ln(K) + ln(n))

1
4

)
,

where the third inequalities are due to
√

a2 + b2 ≤ a + b, for a, b ≥ 0. For ZO-signSGD, unless the
value of b depends on K, the algorithm’s convergence is only guaranteed within some ball around the
solution, making it difficult to compare with other methods. Thus, in the non-convex case, after this

transformation, it becomes apparent that ZO-signum has a convergence rate that is O
(

n
3
4
√
σ

)
and O(

√
n)
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worse than those of ZO-SGD and ZO-adaMM, respectively. This may be attributed to the milder
assumption made on the function F in the present work, which also explains why the convergence is

relative to f β. In the convex case, ZO-signum has a convergence rate that is O
(

nK
1
6

σ

)
worse that of

ZSCG and O
(√

nK
1
6

)
worse that of ZO-SGD. This may be explained by the sign(·) operator loosing

the magnitude information of the gradient when it is applied. This problem may be fixed as in [23]
but it outside the scope of this work. Finally, all methods except ZO-signSGD are momentum-based
versions of the original ZO-SGD method. Although the momentum-based versions are mostly used
in practice, it is interesting to notice that none of these methods possess a better convergence rate
than the original ZO-SGD method. The next section provides some clues about the interests of the
momentum-based method.

Table 2. Summary of convergence rates and query complexity for various ZO algorithms
given K iterations.

Method Assumptions Measure Convergence rate Queries

ZO-SGD [20] F(·, ξ) ∈ C1+

E[||∇ f (xR)||2] O
(
√
σn

1
4

K
1
4

+
√

n
√

K

)
O(K)

E[||∇F(x, ξ) − ∇ f (x)||2] ≤ σ2

ZO-signSGD [30] F(·, ξ) ∈ C0+

E[||∇ f (xR)||2] O
(
√

n
√

K
+
√

n
√

b
+ n√

bq

)
O(bqK)F(·, ξ) ∈ C1+

||∇F(x, ξ)||2 ≤ η

ZO-adaMM [15] F(·, ξ) ∈ C0+

E[||∇ f (xR)||2] O
(( √

n

K
1
4

+ n
√

K

)
(ln(K) + ln(n))

1
4

)
O(K)F(·, ξ) ∈ C1+

||∇F(x, ξ)||∞ ≤ η
ZO-Signum F(·, ξ) ∈ C0+ E[||∇ f β(xR)||2] O

(
n
√

n

K
1
4

ln(K)
)

O(K)

ZO-Signum F(·, ξ) ∈ C0+, f convex E[ f β
i
(xi,K) − f β

i
(xi,∗)] O

(
n
√

n

K
1
3

)
O(K)

ZO-SGD [34] F(·, ξ) ∈ C0+, f convex E[ f (xi,K) − f (xi,∗)] O
(

n
√

K

)
O(K)

Modified ZSCG [5] F(·, ξ) ∈ C1+, F convex
E[ f (xi,K) − f (xi,∗)] O

(
σ
√

n
√

K

)
O(K)

E[||∇F(x, ξ) − ∇ f (x)||2] ≤ σ2

4.2. Convergence rate of the SSO algorithm

The convergence analysis from the previous subsection is in mean, i.e., it establishes the expected
convergence performance over many executions of the ZO-signum algorithm. As in [20], we now
focus on the performance of a single run. A second hierarchical workflow of the different theoretical
results is presented in Table 3.

Table 3. Workflow of Lemmas/Propositions/Theorems for the SSO convergence analysis.
Assumptions on F Preliminary results Intermediate results Main result When f β is convex

Assumptions Lemma 4.6
Lemma 4.9

Theorem 4.3 (i) Theorem 4.3 (ii)1, 2 and 3 Proposition 4.3 Lemma 4.7 Lemma 4.8

which imply Lemma 2.1(3)

L1( f β
i
) ≤ L1( f )

Theorem 4.1
Proposition 4.2 Lemma 4.10Proposition 4.3

Unlike [20], our analysis is based on a sequential optimization framework rather than a post-
optimization process. Our SSO algorithm uses the norm of the momentum as an indicator of the
quality of the current solution. In order to analyze the rate of convergence of this algorithm, the
following additional assumptions are made regarding the function F. The first assumption concerns
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the smoothness of the function F. The assumption of smoothness is used only to guarantee that L1( f β
i
)

is a constant with respect to βi, contrary to the non-smooth case (see [34, Eq (12)]).

Assumption 2. The function F(·, ξ) has a L1(F)-Lipschitz continuous gradient.

The second assumption concerns the local convexity of the function f β.

Assumption 3. Let (xi,0) be a sequence of points produced by Algorithm 2 and xi,∗ a sequence of local
minima of f β

i
. We assume that there exists a threshold I ∈ N and a radius ρ > 0 such that ∀i ≥ I:

(1) f β
i
is convex on the ball Bρ(xi,∗) := {x ∈ Rn : ||x − xi,∗|| < ρ};

(2) xi,0 ∈ Bρ(xi,∗).

Under these assumptions, we will prove that if the norm of the momentum vector m is below some
threshold, then this threshold can be used to bound the norm of the gradient. Second, an estimate for
the number of iterations required to reduce the norm of m below the threshold is provided. The next
lemma is simply technical and demonstrates the link between m̄ and m.

Lemma 4.6. For any subproblem i ∈ N and iteration k ≥ 1, the following equality holds

E[mi,k|xi,k−1] = E[m̄i,k|xi,k−1],

where m̄i,k is defined recursively in Proposition 4.1.

Proof. The proof is conducted by induction on k. For k = 1, setting mi,0 = ∇̃ f β
i
(xi,0, ξ0) implies that

mi,1 = si,0
2 ∇̃ f β

i
(xi,0, ξ0) + (1 − si,0

2 )mi,0 = ∇̃ f β
i
(xi,0, ξ0).

In the same way, m̄i,1 = ∇ f β
i
(xi,0). Therefore, we have

E[mi,1|xi,0] = E[∇̃ f β
i
(xi,0, ξ0)|xi,0] = ∇ f β

i
(xi,0) = E[∇ f β

i
(xi,0)|xi,0] = E[m̄i,1|xi,0].

Now, suppose that the induction assumption is true for a given k ∈ N; then,

E[mi,k+1|xi,k] = si,k
2 ∇ f β

i
(xi,k) + (1 − si,k

2 )E[mi,k|xi,k].

Now, by the law of total expectation

E[mi,k|xi,k] = E[E[mi,k|xi,k, xi,k−1]|xi,k]
= E[E[mi,k|xi,k−1]|xi,k]
= E[E[m̄i,k|xi,k−1]|xi,k] (by the induction assumption)
= E[m̄i,k|xi,k].

Thus as E[∇ f β
i
(xi,k)|xi,k] = ∇ f β

i
(xi,k), it follows that

E[mi,k+1|xi,k] = si,k
2 ∇ f β

i
(xi,k) + (1 − si,k

2 )E[mi,k|xi,k]

= si,k
2 E[∇ f β

i
(xi,k)|xi,k] + (1 − si,k

2 )E[m̄i,k|xi,k]
= E[m̄i,k+1|xi,k],

which completes the proof. �
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The following lemma shows that if ||m|| is below a certain threshold, then this threshold can be used
to bound the norm of the gradient.

Lemma 4.7. For a subproblem i ∈ N, let Ki ∈ N denote the first iteration in Algorithm 1 for which
||mi,Ki || ≤

Lβi

4β0 ; then, under Assumption 3 the norm of the gradient of the function f β
i

at xi,K may be
bounded as follows

||∇ f β
i
(xi,Ki)|| ≤

Lβi

4β0 + 10nL1(F)
si,0

1

si,0
2 Kα1−α2

i

.

Moreover, if the problem i + 1 is considered, the gradient of the function f β
i+1

may be bounded at the
point xi,Ki = xi+1,0 as follows:

||∇ f β
i+1

(xi+1,0)|| ≤ ||∇ f β
i
(xi,Ki)|| + L1(F)(n + 3)

3
2 (βi − βi+1).

Proof. Let Ki be taken as in the statement of the lemma. The norm of the gradient may be bounded as
follows:

||∇ f β
i
(xi,Ki)|| ≤ ||E[mi,Ki |xi,Ki]|| + ||∇ f β

i
(xi,Ki) − E[mi,Ki |xi,Ki]||

≤ E[||mi,Ki || |xi,Ki] + ||∇ f β
i
(xi,Ki) − E[m̄i,Ki |xi,Ki]||,

where the second inequality follows from Jensen’s inequality and Lemma 4.6. Now, using ||mi,Ki || ≤
Lβi

4β0 ,

E[∇ f β
i
(xi,K)|xi,Ki] = ∇ f β

i
(xi,Ki), L1( f β

i
) ≤ L1(F) and the result of Proposition 4.3 completes the first

part of the proof

||∇ f β
i
(xi,Ki)|| ≤

Lβi

4β0 + E[||∇ f β
i
(xi,Ki) − m̄i,Ki || |xi,Ki]

≤
Lβi

4β0 + 10nL1(F)
si,0

1

si,0
2 Kα1−α2

i

.

The second part of the proof follows directly by applying the triangular inequality and the result in
Lemma 2.1(3) because xi,Ki = xi+1,0. �

Under Assumption 2, the expected difference between the values of f β
i
at xi,0 and its optimal value

is bounded in the next lemma.

Lemma 4.8. Let I be the threshold from Assumption 2. If i ≥ I, then

E[ f β
i+1

(xi+1,0) − f β
i+1

(xi+1,∗)] ≤ ρ

Lβi

4β0 + 10nL1(F)
si,0

1

si,0
2 Kα1−α2

i

+ L1(F)(n + 3)
3
2 (βi − βi+1)

 . (4.17)

Proof. Convexity of the function f β
i
on the ball Bρ(xi,∗) implies that

E[ f β
i+1

(xi+1,0) − f β
i+1

(xi+1,∗)] ≤ E[〈∇ f β
i+1

(xi+1,0), xi+1,0 − xi+1,∗〉]

≤ E[||∇ f β
i+1

(xi+1,0)|| ||xi+1,0 − xi+1,∗||].

The result follows by using Lemma 4.7 and because xi+1,0 belongs to the ball Bε(xi,∗). �
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Moreover, an estimate of the number of iterations required to reduce the norm of the gradient below
some threshold may be given.

Lemma 4.9. Under Assumptions 1–3, for a subproblem i > I and in the setting of Algorithm 2, let
si,0

2 ∈ R
+ be such that k = 1 in Eqs (4.4) and (4.9); assume that L = max(L0(F), L1(F)), α1 = 3

4 and
α2 = 1

2 . Then, for a uniformly randomly chosen R ∈ [0,Ki], it follows that

P

(
||∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0

βiK
1
4
i

(Ai + Bi),

where Ai and Bi are defined in Eq (4.18).

Proof. Markov’s inequality implies that

P

(
||∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0E[||∇ f β
i
(xi,R)||]

Lβi .

Now, given the result of Theorem 4.1 with the specified values of α1 and α2 and the fact that
L1( f β

i
) ≤ L1(F) together with Lemma 4.8, it follows that

4β0E[||∇ f β
i
(xi,R)||]

Lβi ≤
4β0

βiK
1
4
i

(Ai + Bi),

where

Ai =
ρ

si,0
1

βi−1

4β0 + 10n
si−1,0

1

si−1,0
2 K

1
4
i−1

+ (n + 3)
3
2 (βi − βi+1)

 ,
Bi =

nsi,0
1

2
H(− 3

2 )
k + ln(Ki)

6 √
si,0

2 (n + 4)
√

n +
20nsi,0

1

si,0
2

 ,
(4.18)

Ki is the iteration number for subproblem i and H(− 3
2 )

k is the generalized harmonic number. �

The following lemma provides an estimate of the number of iterations required to bound the norm
of the difference between m and the gradient below a certain threshold.

Lemma 4.10. For a subproblem i ∈ N and in the setting of Algorithm 2, let si,0
2 ∈ R

+ be such that k = 1
in Eqs (4.4) and (4.9); assume that L = max(L0(F), L1(F)), α1 = 3

4 and α2 = 1
2 . Then, for a uniformly

randomly chosen R ∈ [0,Ki], it follows that

P

(
||mi,R − ∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0

βiK
1
4
i

3 √
si,0

2 (n + 4)
√

n +
10nsi,0

1

si,0
2

 .
Proof. By Markov’s inequality, it follows that

P

(
||mi,R − ∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0E[||mi,R − ∇ f β
i
(xi,R)||]

Lβi

=
4β0

LβiKi

Ki∑
k=0

E[||mi,k − ∇ f β
i
(xi,k)||] ≤

4β0

βiK
1
4
i

3 √
si,0

2 (n + 4)
√

n +
10nsi,0

1

si,0
2

 ,
where the last inequality holds by Propositions 4.2 and 4.3 with α1 = 3

4 and α2 = 1
2 . �
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Finally, the main theorem of this section may be stated.

Theorem 4.3. Let Assumptions 1–3 hold and let I be the threshold from Assumption 3.
(i) For i ∈ N, set

βi =
1

√
n(i + 1)2

, si,0
1 =

1
6n(i + 1)3/2 and si,0

2 =
s2

(i + 1)

with s2 so that Eqs (4.4) and (4.9) are satisfied for k = 1. Moreover, let us denote Ki as the first iteration
for which ||mi,Ki || ≤

Lβi

4β0 and that without loss of generality L = max(L0(F), L1(F)). Let ε > 0 be the

desired accuracy and let i∗ ≥
√

L
ε
≥ I. If for any i ≥ I,Ki ≥ (i + 1)6; then after at most

O
(
n6L7/2

ε7/2

)
function evaluations, the following inequality holds

||∇ f β
i∗

(xi∗,0)|| ≤ ε. (4.19)

(ii) Furthermore, when for every i ∈ N, f β
i
is convex; then, under the same setting as Theorem 4.2

given in Eq (4.13), it follows that after at most

O
n

9
2 L7/2

ε7/2


function evaluations, the inequality given by Eq (4.19) holds.

Proof. For a subproblem i ∈ N, a probabilistic upper bound on the iteration Ki ∈ N such that ||mi,Ki ||≤
Lβi

4β0

may be provided. We have

||mi,Ki || = min
k∈[0,Ki]

||mi,k|| ≤ ||mi,R|| ≤ ||mi,R − ∇ f β
i
(xi,R)|| + ||∇ f β

i
(xi,R)||, (4.20)

where R ∼ U[0,Ki]. Now, probabilistic upper bounds on the number Ki are required to obtain that
both terms on the right-hand side of the previous inequality are below Lβi

4β0 . For the first term of the
right-hand side in Eq (4.20), using the specified values of si,0

1 , si,0
2 and βi, Lemma 4.10 ensures that

P

(
||mi,R − ∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0

βiK
1
4
i

3 √
si,0

2 (n + 4)
√

n +
10nsi,0

1

si,0
2

 ≤ O

n
√

n(i + 1)
3
2

K
1
4
i

 .
The second term of the right-hand side in Eq (4.20) depends on the value of I. For subproblems i ≤ I,
it follows by Markov’s inequality and Theorem 4.1 that

P

(
||∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0

LβiE[||∇ f β
i
(xi,R)||]

≤
4β0

βi

Di
f

si,0
1

+
nsi,0

1

2
H(− 3

2 )
k + ln(Ki)

6 √
si,0

2 (n + 4)
√

n +
40si,0

1 n

si,0
2


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≤ O


max

(
n(i+1)

7
2

L , n
√

n ln(Ki)(i + 1)
3
2

)
K

1
4
i

 .
For subproblems i > I, Lemma 4.9 ensures that

P

(
||∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0

βiK
1
4

(Ai + Bi),

where Ai and Bi are given by Eq (4.18). Now, given the condition on Ki, it follows that

Ai = ρn(i + 1)3/2
(

1
i2 +

10
s2i2 +

2(n + 3)
i2(i + 1)

)
and

Bi =
H(− 3

2 )
k

2(i + 1)3/2 + ln(Ki)

6n
√

n + 3
√

s2
√

i + 1
+

12

s2
√

i + 1

 .
Thus, we obtain

P

(
||∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤ O

n
√

n(i + 1)
3
2 ln(Ki)

K
1
4
i

 . (4.21)

Therefore, to obtain that ||mi,Ki || ≤
Lβi

4β0 , it takes at most the following number of iterations:

Ki =

 O
(
max

(
n4(i + 1)14, n6(i + 1)6

))
, if i ≤ I,

O
((

n6(i + 1)6
))
, otherwise.

Thus, by taking i∗ ≥
√

L
ε
, it follows that the number of iterations needed to reach the subproblem i∗ is

i∗∑
i=1

Ki =

I∑
i=1

Ki +

i∗∑
i=I+1

Ki = O
(
max

(
n4(I + 1)15, n6(I + 1)7

))
+ O(n6(i∗)7) = O

(
n6L7/2

ε7/2

)
, (4.22)

where I is a constant with respect to ε. Once this number of iterations is reached, it follows that
||mi∗,0|| ≤ L

(i∗+1)2 ≤ ε and by Lemma 4.7

||∇ f β
i∗

(xi∗,Ki∗ )|| ≤
L

(i∗ + 1)2 +
L

√
i∗ + 1(i∗)

3
2

≤ 2ε.

For the second part of the proof, the bounds on Eq (4.20) do not depend on the value of I since f β
i

is
assumed convex for every i ∈ N. With the setting in Eq (4.13), it follows that

P

(
||∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0

βi E[||∇ f β
i
(xi,R)||] ≤ 16

ρn
√

n(i + 1)2

K
1
3
i
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and

P

(
||mi,R − ∇ f β

i
(xi,R)|| ≥

Lβi

4β0

)
≤

4β0

Lβi n
√

nL

∑Ki−1
k=0

2ρ

Γk+1(k+1)
4
3∑Ki−1

k=0
2ρ

Γk+1(k+1)

≤ 8
n
√

n(i + 1)2

K
1
3
i

,

where the first inequality follows by Theorem 4.2 and the second one by the definition of the probability
density of R together with Propositions 4.2 and 4.3. Therefore, it takes at most Ki = O(n

9
2 (i + 1)6)

iterations to obtain ||mi,Ki || ≤
Lβi

4β0 . Thus, by taking i∗ ≥
√

L
ε
, it follows that the number of iterations

needed to reach the subproblem i∗ is

i∗∑
i=1

Ki = O(n
9
2 (i∗)7) = O

n
9
2 L

7
2

ε
7
2

 .
It remains to apply Lemma 4.7 as previously done to complete the proof. �

We would like to make a few remarks about this theorem. First, one approach to satisfy the condition
Ki ≥ (i + 1)6 for any i ∈ N is to incorporate it into the stopping criterion of Algorithm 1. However,
due to the limited number of iterations in practice, this condition is typically replaced by a weaker
one, Ki ≥ M, where M > 0 is a constant. Second, the main result of Theorem 4.7 establishes the
rate of convergence to an ε-optimal point for a single run of the SSO algorithm, which is the first of
its kind to the best of our knowledge. This was made possible by decomposing the problem given in
Eq (1.1) into a sequence of subproblems, each of which is solved by using carefully chosen stopping
criteria and step sizes. It is worth noting that, in [20], the (ε,Λ)-solution of the norm of the gradient
is obtained after at most O

(
nL2σ2

ε4

)
function evaluations. Although this bound has a weaker dependence

on n and L, it is worse in terms of ε. Third, the first term in Eq (4.22) may be significant even if it is
fixed, particularly if the region where the function is convex is difficult to reach; indeed, this constant
disappears when f β

i
is convex for every index i. Nevertheless, the bounds given represent the worst set

and may be considerably smaller in practice. A way to decrease this term is to decrease the power on
i in the denominator of βi, si,0

1 and si,0
2 but this would also decrease the asymptotic rate of convergence.

Finally, the process used in the SSO algorithm may be extended to other momentum-based methods
and give an appealing property for these methods compared to the classical SGD.

5. Numerical experiments

The numerical experiments are conducted for two bounded constrained blackbox optimization
problems. In order to handle the bound constraints x ∈ [`,u] ⊂ Rn, the update given by Eq (3.2)
is simply projected such that x← max(`,min(x,u)).

5.1. Application to a solar thermal power plant

The first stochastic test problem is SOLAR [19], which simulates a thermal solar power plant and
contains several instances allowing for selection of the number of variables, the types of constraints
and the objective function to optimize. All of the instances of SOLAR are stochastic and have non-
convex constraints and integer variables. In this work, the algorithms developed do not deal with
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integer variables. Therefore, the problem is altered: all integer variables are fixed to their initial values
and the problem is to obtain a feasible solution by optimizing the expectation of constraint violations
over the remaining variables. Numerical experiments were conducted for the second instance of the
SOLAR framework, which considers 12 variables (2 integers) and 12 constraints

min
x∈[0,1]12

E

 m∑
j=1

max(0, c j(x, ξ))2

 ,
where c j denotes the original stochastic constraints and the bound constraints have been normalized.
The second instance of SOLAR is computationally expensive; a run may take between several seconds
and several minutes. Therefore, the maximum number of function evaluations was set to 1000. Four
algorithms were used

• SSO, whose hyperparameters values are given in Table 4. The search step given in Algorithm 2
was used for this experiment. A truncated version of the Gaussian gradient based estimate was
used for this experiment.

Table 4. List of hyperparameters for the SSO algorithm.

Problem βi si,k
1 si,k

2 M q
Cifar10 0.005

(i+1)2
0.005

(i+1)
3
2
√

k+1

0.9

(i+1)(k+1)
1
4

60 10

ImageNet 0.001
(i+1)2

0.003

(i+1)
3
2
√

k+1

0.7

(i+1)(k+1)
1
4

100 10

Solar 0.3
(i+1)2

0.1

(i+1)
3
2
√

k+1

0.5

(i+1)(k+1)
1
4

5 10

• ZO-adaMM [15] which is a ZO version of the original Adam algorithm. This algorithm appears
as one of the most effective according to [15, 31] in terms of distortion value, number of function
evaluations and success rate. The default parameters defined experimentally in [15] were used
for this problem, except that β = 0.05 and the learning rate was equal to 0.3. Moreover, the same
gradient estimator as that for ZO-signum was used to eliminate its impact on the performance.

• CMA-ES [22] an algorithm based on biologically inspired operators. Its name comes from
the adaptation of the covariance matrix of the multivariate normal distribution used during the
mutation. The version of CMA-ES used was the one of the pymoo [8] library with the default
setting.

• The NOMAD 3.9.1 software [29], based on the MADS [1] algorithm, a popular blackbox
optimization solver.

The results are presented in Figure 2, which plots the average best result obtained by each algorithm
with five different seeds. In this experiment, SSO achieved similar performance to NOMAD and CMA-
ES which are state-of-the-art algorithms for this type of problem. ZO-adaMM had difficulty converging
even though it is a ZO algorithm.
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Figure 2. Average of five different seed runs for the NOMAD, CMAES, SSO and ZO-
adaMM algorithms.

5.2. Application to blackbox adversarial attack

This section demonstrates the competitiveness of the SSO algorithm through experiments involving
the generation of blackbox adversarial examples for deep neural networks (DNNs) [45]. Generating
an adversarial example for a DNN involves adding a well-designed perturbation to the original legal
input to cause the DNN to misclassify it. In this work, the attacker considers the DNN model to
be unknown, hence the term blackbox. Adversarial attacks against DNNs are not just theoretical,
they pose a real safety issue [35]. Having an algorithm that generates effective adversarial examples
enables modification of DNN architecture to enhance its robustness against such attacks. An ideal
adversarial example is one that can mislead a DNN to recognize it as any target image label, while
appearing visually similar to the original input, making the perturbations indiscernible to human eyes.
The similarity between the two inputs is typically measured by an `p norm. Mathematically, a blackbox
adversarial attack can be formalized as follows. Let (y, `) denote a legitimate image y with the true label
` ∈ [1,M], where M is the total number of image classes. Let x denote the adversarial perturbation;
the adversarial example is then given by y′ = y + x, and the goal is to solve the problem [15]

min
x
λ f (y + x) + ||x||2,

subject to (y + x) ∈ [−0.5, 0.5]n,

where λ > 0 is a regularization parameter and f is the blackbox attack loss function. In our
experiments, λ = 10 and the loss function is defined for an untargeted attack [12], i.e.,

f (y′) = max{Z(y′)` −max
j,`

Z(y) j, 0},

where Z(y′)k denotes the prediction score for class k given the input y′. Thus, the minimum value of 0
is reached as the perturbation succeeds to fool the neural network.

The experiments of generating blackbox adversarial examples were first performed by using an
adapted AlexNet [28] on the dataset Cifar10 and then by using InceptionV3 [43] on the dataset
ImageNet [18]. Since the NOMAD algorithm is not recommended for large problems, three
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algorithms are compared: SSO (without search), ZO-adaMM and CMA-ES. In the experiments, the
hyperparameters of the ZO-adaMM algorithm were taken as in [15], and those of SSO are given
in Table 4; the uniform gradient based estimate is used for both algorithms. Moreover, for the
Cifar10 dataset, different initial learning rates for ZO-adaMM were used to observe its influence on
the success rate. Experiments were conducted for 100 randomly selected images with a starting point
corresponding to a null distortion; the maximum number of function queries was set to 5000. Thus, as
the iteration increases, the attack loss decreases until it converges to 0 (indicating a successful attack)
while the norm of the distortion could increase.

The best attack performance involves a trade-off between a fast convergence to a 0 attack loss in
terms of function evaluations, a high rate of success, and a low distortion (evaluated by the `2-norm).
The results for the Cifar10 dataset are given in Table 5.

Table 5. Results of blackbox adversarial attack for the Cifar10 dataset (n = 3 × 32 × 32).

Method Attack success rate ||`2|| first success Average # of function evaluations
ZO-adaMM lr = 0.01 79 % 0.14 582
ZO-adaMM lr = 0.03 96% 0.97 310
ZO-adaMM lr = 0.05 98% 2.10 215
CMAES σ = 0.005 99% 0.33 862
SSO 100% 0.55 442

Except for ZO-adaMM with an initial learning rate equal to 0.01, all algorithms achieved a success
rate above 95%. Among these algorithms, ZO-adaMM with a learning rate equal to 0.05, had the
best convergence rate in terms of function evaluations but it had the worst value of distortion. On the
contrary, CMA-ES obtained the best value of distortion but had the worst convergence rate. The SSO
algorithm achieved balanced results, and it was the only one to reach full success rate.

Table 6 displays the results for the ImageNet dataset. Only two algorithms are compared since
dimensions were too large to invert the covariance matrix in CMA-ES. For this dataset, ZO-adaMM
and SSO had the same convergence rate. However, SSO outperformed ZO-adaMM in terms of success
rate while having a slightly higher level of distortion.

Table 6. Results of blackbox adversarial attack for the ImageNet dataset (n = 3×299×299).

Method Attack success rate ||`2|| first success Average # of function evaluations
ZO-adaMM lr = 0.01 59 % 19 1339
SSO 73 % 33 1335

6. Concluding remarks

This paper presents a method for computationally expensive stochastic blackbox optimization. The
approach uses ZO gradient estimates, which provides three advantages. First, they require few function
evaluations to estimate the gradient, regardless of the problem’s dimensions. Second, under mild
conditions on the noised objective function, the problem is formulated as optimization of a smooth
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approximation. Third, the smooth approximation may appear to be locally convexified near a local
minima.

Based on these three features, the SSO algorithm was proposed. This algorithm is a sequential
one and comprises two steps. The first is an optional search step that improves the exploration of the
decision variable space and the algorithm’s efficiency. The second is a local search, which ensures the
convergence of the algorithm. In this step, the original problem is decomposed into subproblems solved
by a ZO-version of a sign stochastic descent with momentum algorithm. More specifically, when the
momentum’s norm falls below a specified threshold that depends on the smoothing parameter, the
subproblem is considered solved. The smoothing parameter’s value is then decreased, and the SSO
algorithm moves on to the next subproblem.

A theoretical analysis of the algorithm has been conducted. Under Lipschitz continuity of the
stochastic ZO oracle, a convergence rate in mean of the ZO-signum algorithm is derived. Under
additional assumptions of smoothness and convexity or local convexity of the objective function near
its minima, the rate of convergence of the SSO algorithm to an ε-optimal point of the problem has been
derived, which is, to the best of our knowledge, the first of its kind.

Finally, numerical experiments were conducted based on a solar power plant simulation and
adversarial blackbox attacks. Both examples were computationally expensive, the former was a small-
sized problem (n ≈ 10) and the latter was a large-sized problem (up to n ≈ 105). The results
demonstrate the SSO algorithm’s competitiveness in terms of both performance and convergence
rate compared to state-of-the-art algorithms. Further work will extend this approach to constrained
stochastic optimization.
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Appendix

Appendix A. Notations

The following list describes symbols used within the body of the document. Throughout the paper,
when a symbol is shown in bold then it is a vector; otherwise, it is a scalar.
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n The dimension of the space of the design variables
Ω The sample space of ξ, i.e., the set of all possible outcomes of ξ
ξ : Ω→ Rm The vector of uncertainties
Eξ[·] The expectation with respect to the random vector ξ
F : Rn × Rm → R The stochastic zeroth-order oracle that takes into account the uncertainty ξ
f : Rn → R The expectation of F with respect to ξ
β ∈ R+∗ A strictly positive scalar for use as a smoothing parameter
u ∈ Rn A Gaussian random vector
f β = E[ f (x + βu)] A smooth approximation of a function f
L0( f ) The Lipschitz constant associated with a function f
L1( f ) The Lipschitz constant associated with the gradient of a function f
∇ f The gradient of a function f
∇̃ f An estimator of the gradient of a function f

g̃ An estimator of the gradient of a function f based on outputs of the stochastic
zeroth-order oracle F(x, ξ)

j ∈ [1, n] The counter associated with the dimension
i ∈ N The outer iteration counter associated with a subproblem
k ∈ N The inner iteration counter
m ∈ Rn The momentum vector
si,k

2 ∈ (0, 1) The step size associated with the momentum
si,k

1 ∈ (0, 1) The step size associated with x
L ∈ R+∗ An approximation of the Lispchitz constant
q ∈ N The size of the mini batch used to estimate ∇̃
M ∈ N The minimum number of iterations used in the ZO-signum algorithm
H(α)

k The generalized harmonic number of order α
C0+ Class of Lipschitz continuous functions
C1+ Class of differentiable functions whose gradient is Lipschitz
C∞ Class of infinitely differentiable functions

Appendix B. Proof of Proposition 4.1

Proposition B.1. [6] For the subproblem i ∈ N, under Assumption 1 and in the setting of Algorithm 1,
we have

si,k
1 E[||∇ f β

i
(xi,k)||1] ≤ E[ f β

i
(xi,k) − f β

i
(xi,k+1)] +

nL1( f β
i
)

2
(si,k

1 )2

+ 2si,k
1 E[||m̄i,k+1 − ∇ f β

i
(xi,k)||1]︸                         ︷︷                         ︸

bias

+2si,k
1

√
n
√
E[||mi,k+1 − m̄i,k+1||22]︸                    ︷︷                    ︸

variance

,
(B.1)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k
2 ∇ f β

i
(xi,k) + (1 − si,k

2 )m̄i,k
j .

Proof. By L1( f β
i
)-Lipschitz smoothness of f β

i
(see Lemma 2.1(3)), it follows that

f β
i
(xi,k+1) ≤ f β

i
(xi,k) + 〈∇ f β

i
(xi,k), xi,k+1 − xi,k〉 +

L1( f β
i
)

2
||xi,k+1 − xi,k||22
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= f β
i
(xi,k) − si,k

1 〈∇ f β
i
(xi,k), sign(mi,k+1)〉 +

L1( f β
i
)(si,k

1 )2

2
||sign(mi,k+1)||22

= f β
i
(xi,k) − si,k

1 ||∇ f β
i
(xi,k)||1 +

nL1( f β
i
)

2
(si,k

1 )2

+ 2si,k
1

n∑
j=1

|∇ j f β
i
(xi,k)|1{sign(mi,k+1

j ) , sign(∇ j f β
i
(xi,k))},

where 1{·} is the indicator function. Now, as in [6, 30], the expected improvement conditioned on xi,k

is given by

E[ f β
i
(xi,k+1) − f β

i
(xi,k)|xi,k] ≤ −si,k

1 ||∇ f β
i
(xi,k)||1 +

nL1( f β
i
)

2
(si,k

1 )2

+ 2si,k
1

n∑
j=1

|∇ j f β
i
(xi,k)|E[1{sign(mi,k+1

j ) , sign(∇ j f β
i
(xi,k))}|xi,k]. (B.2)

Again, as in [6, 30], the expectation that the sign of mi,k+1
j is different from the sign of ∇ j f β

i
(xi,k) is

relaxed by considering that the set

{mi,k+1
j : sign(mi,k+1

j ) , sign(∇ j f β
i
(xi,k)} ⊂ {mi,k+1

j : |mi,k+1
j − ∇ j f β

i
(xi,k)| ≥ |∇ j f β

i
(xi,k)|}.

Therefore, it follows that

E[1{sign(mi,k+1
j ) , sign(∇ j f β

i
(xi,k))}|xi,k] ≤ E[1{|mi,k+1

j − ∇ j f β
i
(xi,k)| ≥ |∇ j f β

i
(xi,k)|}|xi,k]

≤
E[|mi,k+1

j − ∇ j f β
i
(xi,k)| |xi,k]

|∇ j f βi(xi,k)|
, (B.3)

where the second inequality comes from the conditional Markov’s inequality. Substituting Eq (B.3)
into Eq (B.2) and taking the expectation over all of the randomness we obtain

E[ f β
i
(xi,k+1) − f β

i
(xi,k)] ≤ − si,k

1 E[||∇ f β
i
(xi,k)||1] +

nL
2

(si,k
1 )2 + 2si,k

1

n∑
j=1

E[|mi,k+1
j − ∇ j f β

i
(xi,k)|]. (B.4)

Moreover, by adding and subtracting m̄i,k+1 in terms of the sum of Eq (B.4), one gets

n∑
j=1

E[|mi,k+1
j − ∇ j f β

i
(xi,k)|] = E[||mi,k+1 − m̄i,k+1 + m̄i,k+1 − ∇ f β

i
(xi,k)||1]

≤
√

nE[||mi,k+1 − m̄i,k+1||2] + E[||m̄i,k+1 − ∇ f β
i
(xi,k)||1]

≤
√

n
√
E[||mi,k+1 − m̄i,k+1||22] + E[||m̄i,k+1 − ∇ f β

i
(xi,k)||1],

where the first inequality comes from || · ||1 ≤
√

n|| · ||2 and the second one from Jensen’s inequality.
Finally, incorporating the last inequality in Eq (B.4) completes the proof. �
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Appendix C. Original signSGD and signum algorithms

Below are the original versions of the signSGD and signum algorithms.

Algorithm 3 signSGD algorithm.

1: Input: x0, s1 ∈ (0, 1)
2: for k = 0, 1, . . . do
3: Calculate an estimate of the stochastic gradient ∇̃ f (xk) and update:

xk+1 = xk − s1sign(∇̃ f (xk))

4: end for
5: Return xk

Algorithm 4 Signum algorithm.

1: Input: x0,m0, s1 ∈ (0, 1), s2 ∈ (0, 1)
2: for k = 0, 1, . . . do
3: Calculate an estimate of the stochastic gradient ∇̃ f (xk) and update:

mk+1 = s2mk + (1 − s2)∇̃ f (xk)
xk+1 = xk − s1sign(mk+1)

4: end for
5: Return xk
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